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Abstract 

 
Future Air Force requirements for the use of unmanned aircraft will require 

Automated Aerial Refueling (AAR).  Current AAR research requires a precision model 

to simulate the refueling process of a KC-135 tanker and a UAV.  There are existing high 

fidelity models of the tanker aircraft, refueling boom and proposed receiver aircraft.  

However, none of the models are coupled.  Since boom orientation and motion is known 

to change the trim of the tanker aircraft, which in turn influences all other aspects of the 

refueling process, a new model is needed. 

The new model was created by integrating an existing KC-135 tanker and 

refueling boom model.   The tanker boom equations of motion were coupled using joint 

coordinates and the velocity transformation. Assessment of the new model investigated 

boom and tanker motion in comparison with other established models.  Ultimately, 

behavior of the new model was validated by a comparison of simulation results to flight 

test data. 

The research culminated with the successful validation of the new model.  Boom 

and tanker behavior of the new model matched that of both the established tanker and 

boom models as well as the flight test data.  Even though the KC-135 has been flying for 

nearly 50 years, this is the first model that captures the dynamic interactions of the 

aircraft and its aerial refueling boom. 
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SIMULATION OF THE DYNAMICALLY COUPLED KC-135 TANKER AND 

REFULEING BOOM 

I.  Introduction 

Background 

Unmanned Aerial Vehicles (UAVs) are becoming more and more of an important 

component of the modern battlespace.  The Predator and Global Hawk are predominantly 

intelligence gathering aircraft designed to loiter above and turn their vast array of sensors 

down on the battlefield for extended periods of time.  Since Predator’s inception in 1995, 

it has been equipped with hellfire missiles in order to interdict time sensitive targets on 

the ground.   A greatly upgraded, hunter-killer version of the Predator, the MQ-9 Reaper, 

is now in System Design and Development with a full rate production decision expected 

in 2009.  The advancements include a 3000lb payload capacity to include the capability 

of delivering 500lb Joint Direct Attack Munitions.   

When this current generation of UAVs deploys to a theater of operations, they 

must be broken down at their home station, boxed up, flown to their new base, 

reassembled and then test flown.  This disassembly-reassembly process must be 

accomplished before the aircraft can actually take part in a mission.  This is a somewhat 

satisfactory arrangement given the mission and relative complexity of the aircraft 

involved.  However, expanded roles and aircraft are already being developed for the 

second generation UAVs.  The Unmanned Combat Aerial Vehicle (UCAV) technology 

demonstrator was originally intended as a small, relatively short range aircraft for use in 

Suppression of Enemy Air Defense (SEAD) missions.  The aircraft has since been 

expanded to a vehicle about the size of an F-35 with same variety of missions including 

1 



 

formation flight, multi aircraft attack and aerial refueling.  Refueling a UAV in flight 

introduces issues not experienced during manned refueling operations.  In order to 

address these issues and to train personnel involved in the refueling process, advanced, 

high-fidelity models and simulations are necessary.  

Currently, high-fidelity models of the KC-135 tanker, the refueling boom, and the 

UAVs exist separately, but no existing single system models the dynamic interactions 

among them.  In order for second generation UAVs to deploy from stateside home 

stations to overseas theaters without going through the disassembly-reassembly process, 

UAVs must be capable of Automated Aerial Refueling (AAR).  A high fidelity model 

integrating the behavior of the tanker, boom, and UAV must be developed in order to 

facilitate this.  This thesis will serve as the first step in generating this fully integrated 

model for AAR simulations by developing a coupled, high fidelity model of the KC-135 

tanker and refueling boom. 

System Description 
 

The USAF KC-135 family of tanker aircraft are derivatives of the Boeing 707, 

America’s first transport plane powered by turbojet engines (see Figure 1).  Originally 

designed and built in the 1950’s, more than 500 KC-135’s remain in the USAF inventory 

today. The aircraft is 136.25’ long, has a wingspan of 130.83’ and is capable of carrying 

a transferable fuel load of 200,000 lbs.  Fuel is transferred from tanker to receiver via a 

flying boom.  

During refueling, the receiver aircraft basically flies in formation with the tanker 

and a boom operator flies the boom into contact with the receiver’s receptacle.  The 
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boom operator lies prone in a control station facing aft in the bulbous section of the aft 

fuselage directly below USAF aircraft identifying marker. 

 

Figure 1.  USAF KC-135 Stratotanker with Flying Boom in the Stowed Position (3). 
 

The flying boom itself consists of two distinct pieces.  The fixed boom is the 

portion that can be seen in Figure 1 and consists of 27.75’ long tube-like fairing with an 

elliptical cross section.  The fixed boom travels aft from the boom attachment point, past 

the fairing that houses the boom’s control surfaces and ends at the tip as seen above in 

Figure 1.  The boom extension can be seen in Figure 2.  It is a 27’ foot long cylinder with 

a fuel transfer nozzle at the tip.  While in the stowed position, the boom extension is 

retracted completely inside the fixed boom.  The extension can extend out of the fixed 

boom to a maximum extension position of 20 feet outside the fixed boom. 
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 Fixed Boom 

Boom Extension 

Ruddevators 

 
Figure 2.  KC-135 with Refueling Boom Pitched Down (top) Refueling Boom 
(bottom) (11: 2). 
 

The KC-135 aerial refueling boom is attached to the aircraft at the boom pivot by 

a vertical pin and a yoke and trunnion assembly a combination known as the boom fork.  

The boom fork is shown in Figure 3.  The vertical pin allows the boom to yaw while the 

yoke and trunnion allows pitching movement. 

   

Figure 3.  Boom Fork (12). 
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The boom’s control surfaces, shown in Figure 5, are known as ruddevators.  

These surfaces are what allow the boom operator to manually fly the boom to the receiver 

aircraft’s receptacle.  They consist of a NACA 65-012 airfoil section (Figure 4) with a 

2.583’ chord length.  The ruddevators are mounted at a 42o dihedral angle on the fixed 

boom and have a 5.083’ span from root to tip.  In addition to the manual controls 

afforded the boom operator, an automatic system controls the ruddevators during flight 

while connected with a receiver aircraft.  The purpose of the automatic system is to 

manage the position of the ruddevators in order to control aerodynamic loads on the 

boom during connected flight. 

 
 

 
 
 
 

2.583 ft 

 
Figure 4.  Naca 65-012 Airfoil Showing Ruddevator Chord (13) 

 
 

 
 

Figure 5.  Refueling Boom Ruddevator Layout (1). 

5.083 ft 

42o
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Existing Models 

Currently, there are high fidelity models of both the KC-135 and its refueling 

boom, but in no existing model are the dynamic interactions between the tanker and 

boom taken into account. 

 The high fidelity KC-135 tanker model was developed for the Air Force Research 

Laboratory (AFRL).  The model was written in Simulink and aircraft states, such as 

mass, orientation, speed, and altitude, can be initialized from two separate Matlab script 

files.  The model has the ability to operate on autopilot mode for both straight and level 

and typical race-track type refueling patterns or to take manually commanded pilot 

inputs.  The boom pivot location is attached and tracked, though again, there are no 

interactions between the tanker and boom.   

 The model basically consists of a few major systems broken down into numerous 

sub and other minor systems.  The major systems include the autopilot, control system 

and the actual vehicle model.  The Vehicle Model system contains all the aerodynamic 

and moment of inertia calculations that are fed into the tanker’s equations of motion 

(EOMs). 

The tanker EOMs were developed with the typical aircraft coordinate system 

(origin located at the tanker’s mass center, the x-axis going out the nose, the y-axis 

pointing to right and z axis pointing down).  The EOMs are written in the following 

form: 

  
[ ]

[ ] [ ]
{ }
{ }

{ }
{ } [ ][ ]{ }

[ ] 0
0
B Fvm

M II ω ωω
⎡ ⎤ ⎧ ⎫⎧ ⎫⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥ −⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩⎣ ⎦

I

⎭
  (1) 
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where the far left hand term is the 6x6 mass/inertia matrix, the second term on the left 

hand side is the 6x1 vector of linear and angular accelerations, and the right hand side is a 

6x1 vector of aerodynamic and gravitational forces and moments acting on the tanker.  

This is the matrix-vector version of Newton’s Second Law of Motion, F = ma or M = 

Iω . 

 To solve Equation 1, the AFRL model calculates the force/moment vector on the 

right hand side from the aircraft states.  The EOMs are solved for the acceleration vector 

by multiplying both sides of Equation 1 by the inverse of the mass/inertia matrix.  The 

acceleration vector is then integrated twice to find velocity and position vectors for the 

tanker.  Prior to the second integration, the angular rates must be transformed to aircraft 

attitude rates. 

 In this research, three models of the boom will be discussed.  The first is the 

Boom Operator Part Task Trainer (BOPTT).  This model is used in the training of boom 

operators and has been used in tandem with AFRL’s tanker model to perform AAR 

simulations even though they do not model the dynamic interactions between the tanker 

and boom.  Development of the EOMs for this model treated the boom as a stand alone 

rigid body attached to the tanker at the boom fork.  The boom fork was assumed to 

translate through the air as though on an imaginary rigid rail.  The boom itself was 

allowed to go through its normal motion, but neither model was affected by the other.  

 The second boom model was developed at the Air Force Institute of Technology 

(AFIT) by Campbell in 1989.  Again, EOM development considered the boom as a 

standalone rigid body.  This model was developed to research the possibility of 

expanding the boom’s refueling envelope (7:1). 

7 



 

 The third and most recent boom model was developed by Smith and Kunz (11).  

In a paper presented at the 2006 AIAA Modeling and Simulation Conference, they 

described a method of deriving the EOMs that would potentially couple the tanker and 

boom.  They developed a Matlab model of the boom using those EOMs and compared its 

motion to that of the BOPTT and AFIT model.  The test results indicated that they had 

developed another representative boom model. 

Current AAR Research 

 Most current work in the AAR area is centered around different types of 

control/guidance systems that enable the UAV receiver aircraft to maneuver into and 

remain in a refueling position.  Blake, et al designed a linear position tracking controller 

for the UAV (2).  A collaboration between West Virginia University and Perugia 

University (Italy) has investigated a “control scheme based on a sensor fusion between 

GPS-based and Machine Vision-based measurements” with a probe and drogue type 

refueling system (5, 6).  Other studies at AFRL have looked at developing an overall real 

time simulation environment with tanker, boom, and UAV operator stations to simulate 

the entire process (4, 8).  None of these studies discuss the coupling effects of the tanker 

and boom.  However, the Southwestern Research Institute has investigated developing an 

aerodynamic model of the coupled tanker and boom through computational fluid 

dynamics (15:9). 
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Problem Statement 

 While the AFRL tanker model and the three boom models are all valid training 

tools and offer insight into the behavior of the tanker and boom, no existing model can 

describe the behavior of the tanker and boom as a single system.  For manned refueling 

missions, this is satisfactory because each person in the loop (tanker pilot, boom operator, 

receiver pilot) can make any necessary adjustments to ensure the refueling event is a 

success.  This will not be the case during AAR because one of the decision makers, the 

receiver pilot, has been taken out of the loop.  In order to accurately predict behaviors of 

the tanker boom system, a new model must be developed that couples the dynamic 

interactions between the KC-135 tanker and its refueling boom. 

Research objectives: 

 The objective of this research is to develop and validate a dynamically coupled 

model of the KC-135 and its refueling boom that has the potential to be an effective 

research tool.  AFRL’s KC-135 Simulink model will serve as the baseline program to be 

modified.  In order to leave the majority of this highly reliable model untouched, most 

modifications to this program will be made to the Vehicle Model system.  Every effort 

will be made to ensure that the original inputs and outputs will remain as is, though some 

things will inevitably have to change.  The EOMs and boom model developed by Kunz 

and Smith will serve as tools to help modify the AFRL tanker model and in turn develop 

the first dynamically coupled model of the KC-135 tanker and its refueling boom. 
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Validation of the new model will initially be accomplished by examining its 

simulation results against those obtained from AFRL’s KC-135 model and the 

Kunz/Smith boom model.  Evaluation of the model will include investigating motion of 

the boom and tanker as separate entities, and then as a coupled system.   

Tanker response to the attached boom and commanded changes in boom motion 

will be examined, as will changes in boom motion due to it being dynamically attached to 

the tanker.  There should be some visible effects from the coupling of the tanker and 

boom, but these changes should be rather small in nature.  Final validation of the new 

model will come from comparing the coupled model’s simulation results with existing 

flight test data.  The data includes tanker and boom responses to commanded changes in 

boom position. 
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II Methodology 

Overview 

 This chapter will discuss Kunz and Smith’s development of the coupled EOMs 

for the tanker and boom, the AFRL Simulink model and its operation, and finally the 

method in which the two models were integrated to form the coupled model.  An 

understanding of the EOMs and parts of the existing model is of obvious importance.  

The goal of this research is to combine the two and create a new model.  This chapter will 

help explain why certain approaches were taken and how they were implemented.   

Coupled Equations of Motion 

 As mentioned in Chapter 1, Kunz and Smith developed the EOMs that 

dynamically couple the KC-135 and its refueling boom.  They did so using joint 

coordinates and the velocity transformation.  “The velocity transformation…relates 

absolute Cartesian velocities to relative joint velocities” (11:1-2).  This method allows 

individual derivation of the EOMs for any number of rigid bodies that are connected by 

mechanical joints.  The final form of the coupled EOMs (Equation 2) slightly resemble 

those of Equation 1 in that they can be solved for acceleration as one would solve a set of 

linear algebraic equations. 

 
  (T T

s s )sB I B B Q I Bη η= −  (2) 
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B and B  in Equation 2 are the velocity and acceleration transformation matrices, 

respectively.  Is is the system’s uncoupled mass-inertia matrix.  Qs is the uncoupled 

force/moment vector and is the same thing as the right hand side of Equation 1.  η  and η  

are vectors of the joint velocities and accelerations, respectively.   

 To form Equation 2, each rigid body in the system has its own respective 

coordinate system from which a set of EOMs is developed.  Concatenating the separate 

sets of EOMs into block-matrix form and adding the velocity and acceleration 

transformation matrices forms the uncoupled EOMs for the system. 

 The mechanical joints in the system generate constraints that couple the entire 

system.  The number of constraints is determined by the motion the specific type of joint 

allows.  Joint types, allowable motion and corresponding number of constraints are 

shown in Table 1. 

Table 1.  Mechanical Joints 
 

Joint Type Allowable Motion # of Constraints 

Revolute Rotation in 1 direction 5 
Prismatic Translation in 1 direction 5 

Cylindrical Rotation in 1 direction and 
Translation in 1 direction 4 

Universal Rotation in 2 directions 4 
Spherical Rotation in 3 directions 3 

Floating Body Rotation and Translation 
in all directions 0 
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Finally, the velocity and acceleration transformation matrices are formed.  These 

are a concatenation of several smaller block matrices that are dependent upon the 

connection arrangement and joint type. For example, consider the system in Figure 6. 

 

 
 
 

 
 
 

Figure 6.  Rigid Bodies Connected by Mechanical Joints 

A

B

C

1

2

 
 In this system, there are three rigid bodies (A, B and C) connected by joints 1 and 

2.  This system would have three sets of EOMs, similar in form to Equation 1, with each 

set having been written in its own reference frame.  Assembling these into block-matrix 

form would give the uncoupled EOMs for the system.  Joints 1 and 2 would determine 

the constraints required for the velocity and acceleration transformation to couple the 

system and solution to the system of equations readily follows. 

 In developing coupled EOMs for the KC-135 and refueling boom, the 

tanker/boom system was modeled as three rigid bodies.  The tanker was modeled as a 

rigid body connected to the inertial frame via a floating body joint (no constraints).  The 

tanker’s coordinate frame is that of a typical aircraft coordinate system (x out the nose, y 

toward the right wing, z nominally down) with the origin located at the aircraft’s mass 

center.  This defined the B (body) reference frame (see Figure 7).   
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Figure 7.  Origin of Coordinate Frames Used to Derive the Uncoupled EOMs 
(arrows are all pointing in the positive direction) (14). 
 

 The two parts of the boom, the fixed boom and boom extension, were modeled as 

seperate rigid bodies.  Since the boom fork only allows the fixed boom to pitch and yaw, 

this connection was modeled as a universal joint and generates four motion constraints in 

the system.  The fixed boom’s coordinate system, the F (fixed) reference frame, 

originated at the boom pivot, and the axes “are defined such that when the boom yaw and 

pitch angles are zero, the [fixed] boom axes are aligned with the tanker axes” (11:4).  

This means that the boom would be stowed at a negative pitch angle.  Also, with the 

origin at the boom pivot, the entire length of the fixed boom is in the negative x direction 

of the F frame. 
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The boom extension is only allowed to translate in and out of the fixed boom, so 

the joint connection between the two bodies is a prismatic joint.  This introduces five 

more constraints for a total of nine.  The E (extension) reference frame was originated at 

the tip of the fixed boom, and the axes were defined to always be aligned with the F 

frame.  Note that the boom extension would extend in the negative x direction of the E 

frame.  Figure 7 shows the layout of the three different coordinate frames. 

 This leaves three sets of six uncoupled EOMs for the tanker, fixed boom, and 

boom extension, respectively.  Each set was written with respect to their own reference 

frame.  Concatenating the three sets into block matrix form gives the system’s uncoupled 

EOMs shown in Equation 3  

 

[ ]
[ ]

[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ]

{ }
{ }
{ }
{ }
{ }
{ }

{ }
{ } [ ][ ]{ }
{ } [ ][ ]{ }
{ } [ ][ ]{ }
{ } [ ][ ]{ }
{ } [ ][ ]{ }

0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

BBB

B B B BBB

F F F F FFF F F

F F F FFF F F

E E E E EEE E E

E E E EEE E E

Fvm
M II

F m rvm m r
M Im r I

F m rvm m r
M Im r I

ω ωω
ω ω
ω ωω
ω ω
ω ωω

⎡ ⎤ ⎧ ⎫⎧ ⎫
⎢ ⎥ ⎪ ⎪⎪ ⎪ −⎢ ⎥ ⎪ ⎪⎪ ⎪
⎢ ⎥ ⎪ ⎪⎪ ⎪ −− ⎪ ⎪ ⎪ ⎪=⎢ ⎥⎨ ⎬ ⎨ ⎬−⎢ ⎥⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ −−
⎢ ⎥⎪ ⎪ ⎪

−⎢ ⎥⎪ ⎪ ⎪⎩ ⎭ ⎩⎣ ⎦

I

I

I
⎪
⎪
⎪
⎪⎭

 (3) 

Or compactly written as 

   [Is]{a}={Qs}   (4) 

 where Is is the 18x18 mass/inertia matrix for the system, a is the 18x1 uncoupled 

acceleration vector for the three bodies, and Qs is the 18x1 uncoupled force/moment 

vector.  Both Qs and Is can be directly input into Equation 2.   
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Subtracting the total number of constraints from the total number of degrees of 

freedom in the uncoupled system will show how many degrees of freedom the coupled 

system will have.  Equation 5 shows how to determine the number of degrees of freedom 

a coupled system of rigid bodies connected by joints will contain.  This defines the size 

of the joint velocity and acceleration vectors, η  and η .  Since the three rigid bodies of 

the tanker/boom system have a total of nine degrees of freedom, η  and η  are each 9x1 

vectors.   

  Coupled System DOF = 6 x (# of rigid bodies) – (number of constraints) (5) 

 In the tanker/boom system, the KC-135 joint is a floating body.  This adds no 

motion constraints to the overall system.  The tanker’s six degrees of freedom take up the 

first six states in η  (Ax, Ay, Az, , ,P Q R ).  This accounts for the linear and angular 

accelerations of the tanker in all three axes.  States seven and eight, Fψ  and Fθ , account 

for the allowable angular accelerations (pitch and yaw) of the fixed boom.  The final 

state, Eu , is the linear acceleration of the boom extension as it telescopes in and out of 

the fixed boom.  All together, η  and η  are nine state vectors defined by the following: 
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 η  will be input into Equation 2 first according to the initial condition of each 

state, and then will be updated at each time step throughout the simulation.  η  is the 

vector that will be obtained by solving Equation 2.   

 The overall size of the velocity transformation matrix, B, is determined from the 

coupled tanker/boom system’s degrees of freedom, and the total number of degrees of 

freedom in the uncoupled system.  The coupled system’s degrees of freedom defined 

above determines the total number of columns in the B matrix and corresponds to the 

length of the vectors in Equation 6.  The number of rows in B can be found by examining 

the length of the acceleration vector a in Equation 4.  This vector represents all directions 

of motion available in the uncoupled system.  The coupled tanker/boom system has nine 

degrees of freedom and eighteen uncoupled degrees of freedom.  Therefore, the velocity 

transformation matrix is an 18x9 matrix.  

 Each joint type has a corresponding block matrix that fits into the velocity 

transformation matrix, B.  The size of that block is determined by the joint type.  The 

rows of the block will always be determined by the six unconstrained degrees of freedom.  

The number of columns equals the allowable degrees of freedom defined by a particular 

joint type.  The tanker as a floating body has no constraints, so it will be a 6x6 block.  

The fixed boom (universal joint) has two degrees of freedom and creates a 6x2 block.  

The boom extension a single degree of freedom and will be a 6x1 block. 
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“The position of these block matrices within the velocity transformation matrix is 

determined by the order in which the bodies are connected, and by the type of joint that 

connects the bodies” (11:7).  For the tanker/boom system, the velocity transformation 

matrix will be in the form of Equation 7. 

  
0 0

0
BB

FB FF

EB EF EE

F
B F U

F U P

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

⎟
⎟  (7) 

where the Fxx (floating) blocks are 6x6, the Uxx (universal) blocks are 6x2 and the Pxx 

(prismatic) blocks are 6x1.  The block’s order of placement can be seen by looking from 

right to left at the bottom row of B, “the boom extension is connected to the fixed boom 

by a prismatic joint, the fixed boom is connected to the tanker by a universal joint, and 

the tanker is a floating body” (4:7). The contents of the respective blocks contain the 

required direction cosine matrices, position vectors, and rotation axes for going between 

the different reference frames.  Equation 8  shows the block matrices for the bottom row 

of B.   
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 With all the blocks in place, Equation 7 can be directly input into Equation 2. The 

remaining unknown piece of Equation 2 is the acceleration transformation matrix, B , 

which is the time derivative of the velocity transformation matrix, B.   
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As mentioned in Chapter 1, the Kunz/Smith boom model based on these EOMs 

was developed in Matlab.  The EOMs were written in first order form to ensure 

compatibility with Matlab’s differential equation solution functions.  The model was 

validated for uncoupled boom motion against both the AFIT and BOPTT model.  

The AFRL KC-135 Model 

 An overview of the major systems of AFRL’s KC-135 Simulink model is shown 

in Figure 8.  The function performed by each respective major system is also included in 

Figure 8.  The model is initialized by running two separate Matlab script files: 

sim_tanker_boom.m and init_AAR_tanker.m.  The first file requires input of an initial 

state of the tanker including position, velocity, engine settings, type of path to fly (i.e. 

straight and level, racetrack, etc.), and if control inputs are coming from the autopilot or 

manually.  The second file sets up the mass profile and trim condition of the tanker.  Gain 

schedules for the automatic control system, constants for the WGS-84 inertial frame 

system and the initial conditions on states to be integrated (such as ), in the 

simulation are also set.  The majority of work performed by the model is done in the 

Vehicle Model system.  A breakdown of this system, its subsystems and their inputs and 

outputs is shown in Figure 9.   

, ,&P Q R

 There are a few things to note from Figure 9.  First, though there is a Boom 

Position subsystem, it does not take into account any interactions that would occur 

between the tanker and boom.  The boom position this function calculates appears to be 

the difference between the tanker and boom’s center of gravity based on initial 

conditions.  Secondly, the body forces and moments from the Aero/Propulsion Model 
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and the inertia matrix from the Mass Properties block are fed directly into the Rigid Body 

Motion subsystem. 

 

Tanker Model

Autopilot Breakaway
Logic

Flight 
Control
System

Vehicle
Model

PLA

Calculates desired 
altitude, heading, 

and engine setting 

Calculates 
required control 

surface 
deflections to 

maintain heading 
and altitude

Calculates tanker 
acceleration, velocity 

and position for 
feedback to the next 

time step 

N/A N/A

 

Figure 8.  Major Systems of the AFRL Tanker Model 
 

 

Figure 9.  The Vehicle Model System, Associated Subsystems, and Their Inputs and 
Outputs 
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 The Rigid Body Motion module takes the inputs and solves Equation 1 for the 

tanker’s acceleration vector.  The linear accelerations are integrated twice to get velocity 

and position, respectively.  The angular accelerations are integrated once to find the 

angular rates.  These are fed back through the system.  The tanker Euler angles, inertial 

position and velocity vectors are calculated from quaternions.  Many other variations of 

these states are also calculated and set up for feedback through the system or output to a 

specified location, but are not discussed here because they are not important to the effort 

of creating a coupled model.  An overview of Rigid Body Motion’s subsystems can be 

seen in Figure 10. 

 There are some points to note in Figure 10 as well.  The quaternion and angular 

velocity vector coming out of the Equations of Motion block are both fed back to the 

Form Accelerations block and fed forward to the Alternate States block.  The 

acceleration vectors calculated from the Form Accelerations block are fed forward to the 

Equations of Motion subsystem.  The Equations of Motion block is not exactly as it 

seems; its only function is to integrate the accelerations coming out of the Form 

Accelerations block.  The EOMs are actually solved in the Form Accelerations module. 
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Figure 10:  Subsystems of Rigid Body Motion Including Inputs and Outputs 

 
Implementing the Coupled Equations of Motion in the AFRL Tanker Model 
 
 The first modification was to the initialization files.  Init_AAR_tanker.m was 

modified to include the mass properties and dimensions of the fixed boom, ruddevators 

and boom extension.  The initial state of the system was changed to include the addition 

of the fixed boom and boom extension.  New inputs required were the initial pitch and 

yaw angles of the boom, the boom’s angular rates, initial position of the ruddevators and 

the position of the boom extension.   

 The majority of modifications to the AFRL model took place in the Rigid Body 

Motion system generally, and the Form Accelerations subsystem specifically.  A goal of 

modifying the AFRL model is to leave much of it untouched.  Many required parameters 

for the coupled equations of motion are already calculated elsewhere in the AFRL model 
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and in turn only have to be routed to the correct place.  For example, the tanker’s body 

forces and moments and the mass/inertia matrix as calculated by the AFRL model were 

left alone.  Those values are needed to complete the coupled EOMs, but there was no 

need to build an entirely new function to compute them.  Instead, they were just rerouted 

and concatenated into the coupled EOMs.  Other parameters that are created by the 

coupled EOMs, such as the nine state joint velocity and position vectors, must be fed 

back during each time step.  

 The primary means of modification was placing embedded Matlab functions in 

the Form Accelerations subsystem.  Embedded Matlab functions are basically standalone 

Simulink blocks written in the Matlab language.  There is a limited availability of Matlab 

tools usable in embedded function.  For example, dynamically sizing an array inside a 

loop is not allowed.  The size of the variable must be defined first, and once that size is 

assigned, it cannot change.  The functions can take in and output any number of one or 

two dimensional arrays defined by the user.  Table 2 shows the embedded functions 

added to the AFRL model, and a short discussion of each will follow.  Code for the 

embedded functions can be seen in Appendix C. 
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Table 2.  List of Embedded Functions and their purpose 

Function Purpose 

TankerMass Generate the 6x6 Mass/Inertia Matrix of the Tanker 
Generate rhs of Tanker's 6x1 Force/Moment Vector 

FixedBoom 

Generate the 6x6 Mass/Inertia Matrix of the Fixed 
Boom 
Generate rhs of Fixed Boom's 6x1 Force/Moment 
Vector 

BoomExt 

Generate the 6x6 Mass/Inertia Matrix of the Boom 
Extension 
Generate rhs of Boom Extension's 6x1 Force/Moment 
Vector 

Uncoupled18x18 Concatenate the 3 6x6 Mass/Inertia matrices into the  
18x18 system Mass/Inertia Matrix Is 

FixedBoomDrag_Gravity Calculate the aerodynamic and gravitational force and 
moment contribution of the Fixed Boom 

LeftRuddevator Calculate the aerodynamic and gravitational force and
 moment contribution of the Left Ruddevator 

RightRuddevator Calculate the aerodynamic and gravitational force and
 moment contribution of the Right Ruddevator 

BoomExtension_Drag_Gravity Calculate the aerodynamic and gravitational force and 
moment contribution of the Boom Extension 

VelocityTransformation Calculate the Velocity Transformation Matrix, B 

AccelerationTransformations Calculate the Acceleration Transformation Matrix, 
B_dot 

Combined 
Concatenate all the body and gravitational 
forces/moments 
 to form the system's 18x1 Force/Moment vector  

RHS_I_Bdot_eta performs [Is]*[Bdot]*[ηdot] 

etadoubledot solves the coupled EOMs for the 9 state joint 
acceleration vector 
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 A total of 13 embedded functions were added to the Form Accelerations 

subsystem.  Since most of the embedded functions share a majority of required inputs, a 

single vector was created to serve as their input.  This helped clean up the appearance of 

the new Form Accelerations block and made signal routing much easier.  .   

 TankerMass:  Inputs to this function were the tanker’s mass and inertia matrix as 

calculated by the original model.  Basically, this took Simulink’s version the tanker’s 

inertia matrix, which was a six component vector containing the mass moment of inertia 

for each principal direction, and formed the 6x6 mass/inertia matrix of the tanker.  Also 

the [ ][ ]{ }B B BIω ω  portion of the tanker’s section of Qs in Equation 4 was calculated and 

output. 

 FixedBoom:  Inputs were the tanker’s angular velocity and the pitch/yaw position 

and rate of the boom.  It calculated the fixed boom’s mass/inertia matrix, along with the 

[ ][ ]{ }F F F Fm rω ω  and [ ][ ]{ }F F FIω ω  portions of Qs corresponding to the fixed boom.  

 BoomExt:  Inputs were the boom extension’s position, the tanker’s angular 

velocity and the pitch/yaw position and rate of the boom.  It calculated the boom 

extension’s mass/inertia matrix, along with the [ ][ ]{ }E E E Em rω ω and [ ][ ]{ }E E EIω ω  

portions of Qs corresponding to the boom extension. 

 Uncoupled18x18:  Took in the three 6x6 mass/inertia matrices and the three 6x1 

right portions of Qs.  Assembled the 18x18 mass/inertia matrix for the system and the 

18x1 right side of Qs. 
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FixedBoomDragGravity:  Inputs to this system include the tanker’s inertial 

velocity vector and Euler angles, as well as the fixed boom’s pitch/yaw attitude and rates.  

The incremental aerodynamic forces on the fixed boom were calculated using the drag 

relationship and integrated from the boom tip to the boom pivot.  The fixed boom was 

modeled as a cylinder of varying diameter and the drag coefficient was found from the 

cylinder’s relationship to the local Reynold’s number.  This function’s output was the 

6x1 aerodynamic and gravitational force/moment vectors of the fixed boom. 

 LeftRuddevator:  Inputs here were the translational and angular velocities and 

Euler angles of the tanker and the fixed boom’s pitch/yaw attitude and rates.  

Aerodynamic forces were calculated using general aerodynamic strip theory as would be 

used on any wing or control surface.  An additional coordinate system was needed for 

this calculation, and it originated where the ruddevator would intersect the fixed boom 

centerline.  All three axes initially aligned with those of the F frame.  This coordinate 

system was then rotated 42o about the x axis to account for the ruddevator dihedral angle.  

This rotation puts the left ruddevator on the negative y axis and defines the WL frame.  

The local velocity was calculated and the angle of attack was corrected for yawed flow.  

With this corrected angle of attack, lift and drag coefficients were calculated and the 

incremental forces and moments were calculated across the ruddevator span.  The 

incremental forces were then integrated from the ruddevator tip inboard.  Once the force 

and moment contribution of left ruddevator had been calculated in the WL frame, they 

were transformed to act at the boom pivot, which is also the origin of the F frame.  
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 RightRuddevator:  Same inputs and calculations performed as in the 

LeftRuddevator function, but this time the coordinate system was rotated -42o about the x 

axis to form the WR frame.  In turn, the positive y direction went from the origin outboard 

to the right ruddevator tip, and the incremental forces and moments were integrated from 

inboard to outboard.  The ruddevator reference frames are shown in Figure 11. 

 

 
WLz

-WLy

WRz

WRy

 

Figure 11.  Ruddevator Coordinate Frames (1) 

 BoomExtension_Drag_Gravity:  Aerodynamic forces and moments for the 

boom extension were calculated in the same manner as the elliptical portion of the fixed 

boom, with the exception that the boom extension has a fixed diameter.  Obviously, if the 

boom extension is completely inside the fixed boom, it adds no drag to the system.  If the 

boom extension has telescoped out of the fixed boom, the incremental drag forces are 

calculated and then integrated from the boom extension’s tip to the tip of the fixed boom. 

VelocityTransformation:  Takes in the tanker and fixed boom position angles 

and the boom extension’s position.  Computes the floating, universal and prismatic 

blocks of Equation 7 and then assembles them into the 18x9 velocity transformation 

matrix B. 
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 AccelerationTransformation:  Takes in the tanker and fixed boom attitudes and 

the pitch/yaw rate of the fixed boom.  Computes the derivative of the velocity 

transformation matrix, which is the acceleration transformation matrix B .  

 Combined:  Takes in the tanker body forces and moments originally calculated 

by the AFRL model, and all the aerodynamic and gravitational forces/moments for the 

fixed boom, ruddevators and boom extension.  Recall that the Left/Right Ruddevator 

function transformed their forces and moments to act at the boom pivot, which is the 

origin of the F reference frame.  Here, both ruddevator forces and moments are added to 

the forces and moments for the fixed boom.  Once that was done, everything was 

concatenated into an 18x1 force vector, which is the left portion of Qs from Equation 4.   

 RHS_I_Bdot_eta:  Takes in Is from the Uncoupled18x18 function, B  from the 

AccelerationTransformation function, the joint velocity vector, η  that was fed back from 

the Equations of Motion system from the AFRL model, and the tanker’s inertial velocity 

vector.  Computes the Is B η  portion of Equation 2. 

 etadoubledot:  Takes in Is from the Uncoupled18x18 function, the fully 

assembled 18x1 Qs vector, and the velocity transformation matrix, B from the 

VelocityTransformation function.  Computes the joint acceleration vector, η , of the 

coupled tanker/boom system.  This is the final solution to Equation 2, the EOMs that 

were derived to couple the tanker and boom, at a particular time step. 

 After coming out of the etadoubledot function, the joint acceleration vector is 

then fed forward to the Equations of Motion system.  Originally, there were two Simulink 

integration block systems in the Equations of Motion system; one for the linear and 
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another for the angular accelerations of the tanker.  Prior to entering the Equations of 

Motion system, the tanker’s linear accelerations were converted to the inertial frame.  In 

order to keep the original model going with all its calculations involving the various 

forms of the basic data, the linear and angular accelerations of the tanker (the first 6 

states of  η ) were extracted from η .  The tanker’s linear accelerations were converted to 

the inertial frame and then they along with the tanker’s angular accelerations were sent 

through the AFRL model’s two original integration block systems.  Inside the Equations 

of Motion system, a third Simulink integration block system was added and set up to 

receive η , integrate it twice and extract the joint velocity and position vectors that were 

required for feedback through the Form Accelerations system.  The modified portions of 

the AFRL Simulink model can be seen in Appendix A   
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III Data Analysis 

Overview 

 Data collection and analysis for this thesis basically involved performing 

simulations of the new model, and comparing those results to similar simulations 

performed using the Kunz/Smith boom model and the AFRL tanker model.  Of particular 

interest was investigating the motion of the boom and tanker, and taking note to see if the 

newly developed equations of motion did exhibit any coupling tendencies between the 

tanker and boom.  For final validation, simulation results were compared to data recorded 

during a flight test. 

 The first evaluation of the new coupled Simulink model was to run the simulation 

with the tanker limited to unaccelerated, straight and level flight.  This effectively puts 

the tanker back on the assumed rigid rail of the original AFRL model because the tanker 

will not be able to respond to any boom motion. Everything in the tanker’s acceleration 

and velocity vector, except the tanker’s initial velocity, must be forced to zero in order to 

accomplish this.  These conditions replicate the comparison of the Kunz/Smith boom to 

the BOPTT and AFIT boom models.  Comparisons between the new model and the 

Kunz/Smith model were used for initial validation of boom motion in the new model.  

Boom response to symmetric and asymmetric ruddevator step deflections will be 

investigated.   In both cases, boom motion should be very similar in this series of 

simulations.  Since the Kunz/Smith model has already been validated as an effective 

representation of boom behavior, this test will serve to validate the behavior of the new 

model’s boom. 
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 The second step in model validation will study the effect of coupling the boom 

and tanker.  If the two bodies have in fact been effectively coupled, there should be small, 

but noticeable changes in the behavior of the tanker and boom.  A comparison of tanker 

motion between the AFRL tanker model and the coupled model will show any effects the 

boom has on the tanker.  The two models were compared in straight and level flight, and 

no control inputs were commanded to the boom in the coupled simulation.  To investigate 

the effect of the tanker on boom motion, the coupled model simulation will be performed 

twice; once with the tanker constrained to straight and level flight, and then with no 

motion constraints placed on the tanker.  This test will show the tanker’s coupling effect 

on the boom.  There should be no large differences in response for any of these test cases.  

There should be a settling period involved with the coupled model in all attitudes, but 

tanker and boom motion should generally follow that of the existing models. 

  To investigate the tanker effects on controlled boom motion, the six degree 

symmetric and asymmetric ruddevator deflection tests will be repeated with the steady 

level flight constraint removed.  These results will then be compared to the previous 

results of the same simulation performed with the steady flight constraint in place. 

 To study the effects of commanded boom motion on the tanker, a ten degree 

symmetric and asymmetric ruddevator deflection will be commanded in the fully coupled 

model.  A comparison will be made between this simulation, and simulation performed 

by the AFRL and coupled model with no control inputs. 
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Final validation will come from comparison of the coupled model to existing 

flight test data recorded during a series of flight tests.  The test cases to be examined will 

compare tanker and boom response to a schedule of ruddevator deflections.  If 

simulations from the new model behave with consistency and can resemble the responses 

of the available data, then the new coupled model can be validated as a reasonable tool 

with which to study the motion of the tanker/boom system. 

Test Scenario Setup 

 The basic conditions for the test cases in this research were centered on a nominal 

configuration of the KC-135 tanker and aerial refueling boom.  The tanker was assumed 

to be in trim at the initial conditions shown in Table 3.  The only other manual inputs to 

the system were the position angles of the ruddevators.  Everything else required to 

determine the initial state of the tanker and boom was calculated by the two Matlab 

initialization files.  There are no structural, aerodynamic, position or rate limits placed on 

the boom.  The ruddevator’s automatic control system is not included.  However, as long 

as the system is placed in a realistic initial setting, such as the nominal case described in 

Table 3, and no grossly exaggerated inputs are used, the system stays inside its envelope. 

Table 3.  Nominal States for an Assumed Trimmed Tanker/Boom System 

Velocity 670 fps 
Altitude 25000 ft (std Atm) 
Boom Pitch 30 deg 
Boom Yaw 0 deg 
Boom Extension 12.2 ft 
Ruddevator Position -22.68 deg 
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Boom Motion with the Tanker in Unaccelerated, Straight and Level Flight  

 The first examination of the new model will look at boom behavior only, which is 

accomplished by limiting the tanker to unaccelerated, straight and level flight.  This 

motion constraint effectively uncouples the system and will allow direct comparison of 

new model’s boom motion to that of the Kunz/Smith model.  The EOMs in Kunz/Smith 

and the new coupled model are the same, but are implemented with different numerical 

techniques, so there should be very little difference in the behavior of both models.  

Differences could also arise because the two models compute the trim state of the tanker 

differently.  The coupled model includes engine dynamics as part of its trim and 

subsequent force calculations, whereas the Kunz/Smith model is purely aerodynamic.  At 

the initial conditions in Table 3, the coupled model’s tanker was trimmed at a 1.46o pitch 

angle.  The tanker in the Kunz/Smith model was trimmed at 0o pitch.  Figure 12 shows 

the boom’s pitch response to a symmetric, six degree step input to the 

ruddevators.
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Figure 12.  Boom Pitch Response to a Six Degree Symmetric Ruddevator Deflection. 
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 The step was commanded at two seconds.  As expected, the Kunz/Smith and 

coupled models basically mirror each other.  The coupled model tracks the motion of the 

Kunz/Smith model, but has slightly higher frequency and damping.  This can be 

explained by the differences in numerical techniques used.  To accomplish the required 

integration of incremental forces and moments on the fixed boom, ruddevators and boom 

extension, Kunz and Smith used the Matlab function quadv, which is based on the 

adaptive Simpson’s rule for quadrature.  The new Simulink model uses an integration 

routine based on the trapezoidal rule to perform the same operations.   

 In addition, when determining the incremental lift and drag coefficients on the 

ruddevators, Kunz and Smith use a two-dimensional table lookup and interpolation based 

on local the angle of attack and Mach number along the span of the ruddevators.  Due to 

limitations involved with using embedded Matlab functions in a Simulink model, this 

was reduced to a one dimensional interpolation in the coupled model.  Ruddevator lift 

and drag coefficient data was available in tabular form at Mach numbers of 0, 0.2, 0.3, 

0.4, 0.5, 0.6, 0.8, and 1.  The new model calculates the local Mach number and angle of 

attack along the ruddevator span, selects the closest Mach number table available, and 

then the coefficients are determined by a linear interpolation based on the local angle of 

attack.  Therefore, the ruddevators in the coupled model generated slightly different 

forces than the Kunz/Smith model.   
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The forces generated by the ruddevators in the coupled model were about 7-8% 

larger than those of Kunz/Smith, and in turn the new model’s ruddevators have more 

control authority than those of the Kunz/Smith model.  Boom yaw response is not 

examined in this case because the maximum yaw motion is on the order of 10-6 degrees. 

 Next, a six degree asymmetric step deflection was commanded to the 

ruddevators.  For the case in Figure 13, the left ruddevator deflection was a negative six 

degrees (from nominal to -28.68o), and the right was positive (from nominal to -16.68o).  

Again, the coupled model has a higher frequency and damping, but in this case, the initial 

response is of larger amplitude and the boom eventually converges to a slightly higher 

pitch angle than that of the Kunz/Smith model.  This is where the different initial trim 

states of the models can be seen.  In the boom pitch angle plot of Figure 13, the coupled 

model’s boom starts in its nominal 30o pitch down state and initially starts to climb in an 

effort to find its true trim state.  Kunz and Smith note that in the coupled system, the 

ruddevators help force the boom down when it is in a yawed state (4:9).  This occurs 

during the initial response to the ruddevator deflection where the coupled model’s more 

authoritative controls force the boom further down.   

 Simulation results for boom behavior in the new model match that of the 

Kunz/Smith.  There are slight, but acceptable, differences in motion due to the different 

numerical techniques used.  This proves that the new model adequately produces 

uncoupled boom motion similar to the existing and previously verified models. 
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Figure 13.  Boom Yaw and Pitch Response to a Six Degree Asymmetric Ruddevator 
Deflection. 
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The Effect of Coupling the Tanker and Boom  

 To investigate the effect of coupling the boom to the tanker, the tanker in the 

coupled model must be removed from the unaccelerated, steady flight constraint.  With 

that restriction gone, a simulation was performed using no ruddevator control inputs to 

look at the changes in both boom and tanker behavior.  To study the effect on the tanker, 

these results were compared to a simulation performed using the AFRL tanker model.  To 

study the coupling effect on the boom, the results from this simulation were compared to 

those of the coupled model with the steady flight restriction still on the tanker.   

 The coupling effect of the boom and tanker can be seen in Figure 14 and Figure 

15.  Boom effects on the tanker are easily noticeable.  First is the initial transient of the 

coupled model as the tanker adjusts to the boom.  It quickly settles into a slightly more 

nose up attitude.  Afterwards, the coupled tanker continues to remain in a more nose up 

attitude.  This is because the nose down moment caused by the drag force on the boom is 

overcome by the nose up moment generated by its weight.  The difference in the tanker 

pitch angle is not significant, but the fact that there is a difference shows that coupling 

between the boom and tanker is taking place in the new model and that this change 

conforms to the expected physics of the situation. 
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Figure 14.  Tanker Pitch Angle Comparison from the Coupled and AFRL Model 
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Figure 15.  Boom Pitch Angle Comparison: Coupled and Steady, Level Flight 
Constrained 
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 Figure 15 shows the effect of the tanker on the boom.  The tanker appears to have 

very little impact on the boom.  Again, there is the initial transient followed by the boom 

settling in a slightly more pitch down attitude.  Also of note is the pitch motion of the 

boom is measured with respect to the tanker centerline.  As expected, the simulation with 

the steady level flight constraint showed no reaction to changes in tanker attitude.  For 

the coupled model, recall that positive boom pitch is measured in degrees down from the 

aircraft centerline.  After the initial transient (t = 0-8 sec), the tanker pitch attitude noses 

down and the boom pitches up.  Some of this increase in boom pitch is likely related to 

the fact the reference frame for the measurement moved upwards, but the value of the 

tanker pitch and boom pitch changes are not the same.  At the maximum change, tanker 

pitch decreased by ~0.2o while boom pitch only increased ~0.1o.  This indicates that the 

ruddevators are pushing the boom in the opposite direction.  This trend continues in both 

directions as the tanker pitch settles out.  The change in trim is rather small, but again, the 

fact that there was any change shows that the dynamics of the tanker and boom are in 

indeed interacting. 

 The results of this test are another good sign for the viability of the new model.  

They showed that there were in fact dynamic interactions taking place between the tanker 

and boom.  Behavior changes were small but noticeable, and in agreement with the 

expected physics of the situation.     
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Tanker Effects on Boom Motion with Boom Control Inputs 

 To find out what effects the tanker has on boom motion, the first two simulations 

(six degree symmetric and asymmetric ruddevator step inputs) were repeated with the 

unaccelerated, steady flight constraint removed.   

 Figure 16 shows that the tanker has a negligible effect on boom motion when a 

symmetric ruddevator deflection is commanded.  The coupled boom also shows the same 

initial transient as the boom and tanker begin to settle.  Eventually, the boom settles out 

to a more increased pitch down angle than US&LF, but not enough to have any real 

effect on the boom motion. 
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Figure 16.  Comparison of Boom Pitch Response to a Six Degree Symmetric 
Ruddevator Deflection.  
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 Coupled boom response to a six degree asymmetric control input can be seen in 

Figure 17.  Again, the tanker does not make any significant difference in the yaw motion 

of the boom.  The initial effect of coupling the tanker and boom can again be seen in the 

boom’s pitch transient during the two seconds before the ruddevator input is commanded.  

The coupled boom’s pitch trims out about 0.25o more pitch down than the US&LF case. 

 These results are also promising.  The tanker is exhibiting an influence, however 

small, on the motion of the boom.  Of note is that the no matter the input, the boom 

trimmed out to a slightly increased pitch angle.  This is expected based on the results 

shown in Figure 15. 
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Figure 17.  Comparison of Boom Pitch and Yaw Response to a Six Degree 
Symmetric Ruddevator Deflection.  
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Boom Effects on Tanker Motion with Boom Control Inputs 

 The next step in validating the new coupled model involved comparing changes 

in tanker attitude as a result of commanded boom motion.  The coupled (w/ no control 

inputs) and AFRL models were compared to the results of coupled model simulations 

performed with ten degree symmetric and asymmetric ruddevator inputs.  The deflections 

were commanded to take place at the 30 second point in the simulation. 

 Figure 18 shows the results of the simulation where the symmetric ruddevator 

deflection was input.  As noticed before, symmetric ruddevators deflection will only 

cause the boom to pitch.  The tanker’s response is not really affected by the pitching 

motion of the boom.  There is a noticeable transient at 30 seconds when the ruddevator 

deflection is commanded, and the tanker settles into a slightly lower pitch attitude than 

does the coupled model when no ruddevator deflection was commanded.  The boom itself 

settles from 30o to about 19o pitch down.     
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Figure 18.  Tanker Pitch Response to a Ten Degree Symmetric Ruddevator 
Deflection 
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 Next was a comparison of simulations performed with an asymmetric ruddevator 

deflection.  For this particular simulation, it is important to clearly understand the final 

state of the tanker/boom system at the end of the simulation.    The boom moved from the 

30o pitch and 0o yaw position to 19o pitch and 15o yaw.  This places the boom in a higher 

pitch attitude in the freestream on the left side of the aircraft.  The tanker’s pitch attitude 

behaves almost exactly the same as in previous tests, but here is where we see the first 

changes to the tanker’s yaw and roll attitude due to the boom.  The tanker ended up with 

a slight negative (right wing up) roll attitude and a steadily increasing negative yaw (nose 

left) attitude.  These results are shown in Figure 19. 

 The tanker’s pitch response remains virtually unchanged from the symmetric 

input case, but did go up a miniscule amount settling a little closer to the final value of 

the coupled model with no inputs.  The change in the roll and yaw angles is due to the 

final placement of the boom in this test case.   

 As mentioned previously, the boom trims out under the left side of the aircraft.  

This adds an extra mass component to the left of the tanker’s center of gravity which in 

turn generates a moment that forces the left wing down (a negative roll attitude).  In 

similar fashion, the drag component of the boom generates a negative yawing moment 

(nose left).   
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Figure 19.  Tanker Pitch, Roll and Yaw Response to a Ten Degree Asymmetric 
Ruddevator Deflection 
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 These results correspond to what should be expected to happen for the 

tanker/boom system in this particular configuration.  However, the yaw attitude of the 

tanker does not settle into a new trim condition, but instead the tanker trims into a steady 

level turn to the left. 

 These tests have shown that the tanker responds to the boom as would be 

expected.  The changes are not large, but those that occur agree with the physics of the 

problem.   

Comparison to Flight Test Data 

 The final validation for the newly developed model will attempt to compare 

results obtained from the simulation to flight test data collected for the Air Force in 1998 

(3).  The data itself is very limited as a comparative tool.  No numeric data was available, 

only pictures of the time histories for each test are available.  Some scales used for the 

flight tests do not lend to easy interpretation.  For example, the pitch rates generated by 

the simulation ranged from -0.1o/s up to 0.1o/s.  The scale of the pitch rate time history 

ran from -4o/s up to 4o/s.  Accordingly, the flight test data hung around zero but could not 

be interpreted to make a direct comparison to the simulation results useful.  For 

comparisons such as that one, a generalization could be made indicating that the 

simulation was not generating completely false data, but there was nothing to corroborate 

its results.  Also, tanker attitude comparisons may be of little use.   
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In the test scenarios examined, the tanker was being flown manually, whereas the 

simulation completely relies on the model of the autopilot for tanker control inputs.  That 

being said, where the flight test data could be interpreted and an effective comparison 

made between it and the simulation, it was performed and will be discussed.  Otherwise, 

items such as the attitude rates of the tanker will not. 

 The entire scenario of the flight test was not recreated in the simulation.  The 

scope of the research was only interested in validating the general behavior of this 

approach to coupling the tanker and refueling boom.  The initial trim condition of the 

tanker and boom for the flight test was different from the configuration run in the 

simulation.  The altitude (~21000 ft) and speed (~622 fps) of the tanker was slightly 

lower than that of the nominal case.  The tanker’s pitch attitude (2.5o) and weight (240k 

lbf) was higher, and the initial position of the boom was a little different from nominal as 

well.   

 For the simulation runs, the tanker/boom system was left in the nominal case of 

Table 3.  Data from the flight test time histories was manually read and placed into a file 

so that comparisons could be made on a single graph.  When the simulation data had been 

collected and plotted, the flight test data was shifted up or down so that its initial value 

would match that of the simulation.  From this point, the comparisons of the boom and 

tanker behavior trends could be examined.  

 The two flight test cases to be examined were both quite similar.  The tanker and 

refueling boom were both initially flying straight and level in a trim configuration.  A 

series of ruddevator deflections was commanded, and the data acquisition system 

measured and recorded time histories for numerous aircraft and boom parameters.  Each 
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test case lasted about 80 seconds.   The first deflection schedule commanded a series of 

symmetric inputs to examine the boom’s pitch behavior.  The second was a series of 

asymmetric deflections to investigate the boom’s yaw behavior.  

 The series of ruddevator commands changed the ruddevator control input method 

for the simulation.  In each of the earlier simulations, the ruddevator position was set 

before the simulation started.  If necessary, a single step change to this initial position 

was made at a desired point in time.  Ruddevator deflections from the flight test data 

were part of the time histories returned by the data acquisition system.  For use in the 

simulation, the complete time history of ruddevator position was modeled as a series of 

straight lines with respect to time.  Distinct points of interest, basically where the 

ruddevator position changed slope, were used to generate both a time and position vector 

of ruddevator position.  These vectors were placed into the embedded functions for the 

left and right ruddevator, and transitions between the distinct points were approximated 

by a linear interpolation. 

 The results of the first simulation (symmetric ruddevator deflection) can be seen 

in Figure 20.  The first chart shows the ruddevator deflection schedule that was 

commanded in this test.  This delfection schedule was designed to investigate the pitch 

response of the boom.  The model’s boom pitch motion generally followed the flight test 

data.  The model moved to greater extremes when the ruddevators were held in place 

after a linear deflection.  Otherwise, the boom’s pitch changed or leveled out every time 

the ruddevators did the same.  Here, the differences are not large, and considering the 

manual interpretation and shifting of the test data, the general trend of the simulation is 

consistent with the flight test.  This is not the case with the yaw attitude of the boom.  
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There appears to be very little agreement between the flight test data and the simulation 

results.  The simulation does not actually exhibit any yaw response.  This is not 

unexpected because in no prior simulation did the boom have a significant yaw response 

to a symmetric ruddevator input.   

 Recall that the flight test scenario was not completely recreated, and that the 

purpose of this particular test was to study the pitch response of the boom.  Also, the 

simulations were run under ideal conditions where there are no wind gusts, changes in 

wind direction, boom interactions with the tanker wake, or many other things that happen 

in the real world.  All prior simulations reveal that a symmetric ruddevator deflection will 

induce no change in the yaw of the boom, but will cause boom pitch to exhibit a certain 

type of behavior.  Correspondingly, in this test with symmetric ruddevator deflections, 

the pitch behavior of the flight test boom has been matched by the simulation.  In 

comparison to the flight test data, there is no agreement with the yaw behavior of the 

boom, and this is where real world effects are seen.  The ideal environment generates no 

change in yaw, whereas the real world does.  
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Figure 20.  Boom Response to a Symmetric Ruddevator Control Schedule: Flight 
Test Data –vs- Simulation  
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 Figure 21 shows the results of the second simulation.  Again, the first chart shows 

the ruddevator deflection schedule.  This test commanded a series of asymmetric 

ruddevator deflections intended to investigate boom yaw response to the commanded 

inputs.  Just as in the symmetric test case, the off-axis test, which in this case was boom 

pitch response, does not correspond very well to the flight test data.  On the other hand, 

the yaw motion of the boom matched almost perfectly.  Again, the extremes of the 

motion were a little larger for the simulation than in the flight test data and can be 

explained by the manual interpretation and shifting of the test data.  Looking closely at 

the two specific flight tests, it is apparent that each ruddevator control schedule was 

designed to investigate boom behavior for a specific axis and real world interactions 

caused the differences in the off-axis behavior.   

 The overall results of the combined research presented in this chapter corroborate 

this.  In all previous cases where a symmetric ruddevator deflection was commanded, 

there was no effect on the boom’s yaw position.  With this information, of the lack of 

agreement in boom yaw position in Figure 20 and boom pitch position in figure 21 

lessens in importance.  What is significant is that the simulation performance did exhibit 

the same behaviors as the boom in the flight test when compared to the defined purpose 

of the test. 
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Figure 21.  Boom Response to an Aymmetric Ruddevator Control Schedule: Flight 
Test Data –vs- Simulation 
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IV.   Conclusions and Recommendations 

Conclusions 

 In the KC-135’s nearly 50 years of flight, no simulation has been developed to 

model the dynamic interactions of the tanker aircraft and its aerial refueling boom.  This 

thesis has filled that knowledge gap.  Using the EOMs developed by Kunz and Smith in 

tandem with AFRL’s model of the KC-135 tanker, the first model to reasonably simulate 

the behavior of the tanker and boom as a single, dynamically coupled system has been 

developed 

 After all the simulations have been examined, it is safe to say that this model is a 

viable tool to further extend research in the area of AAR.  Results obtained from this 

model were consistent with those obtained from the established AFRL tanker model and 

the Kunz/Smith boom model.  The slight behavior differences between the simulations 

can mostly be explained by the numerics used to solve the problem. 

 In the two simulations that were compared to flight test data, it is important to 

note that each flight test event was performed to measure either the boom’s pitch or yaw 

performance.  Symmetric ruddevator deflections tested the pitch motion of the boom, and 

the results of the simulation matched the trends of the test data when comparing that 

mode of motion.  Asymmetric ruddevator deflections tested the yaw behavior of the 

boom, and once again, the simulation matched the trends of the test data when comparing 

the yaw motion of the boom. 
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The goals for the focus and scope of this research have been reached.  There are 

certainly improvements that could be made to the model and further testing and 

refinement could expand the model’s viability beyond that of a basic research tool.  This 

study was undertaken to develop and validate a model that coupled the dynamic 

interactions between the KC-135 tanker aircraft and its refueling boom, and this goal has 

been accomplished. 

Suggestions for further Study  

 Several things could be done to make this model a more valuable tool for AAR 

research.  The tests run in this thesis centered around a nominal configuration of the 

tanker and boom system, so the test envelope should be expanded.  Refinements could be 

made to improve the accuracy of the simulation and the computational efficiency of the 

model could also be improved.  Finally a full blown AAR simulation could be developed 

by the addition of a receiver aircraft to this model. 

 Before the model can be considered completely viable, it needs to be thoroughly 

examined in conditions other than the nominal case.  Racetrack patterns, different tanker 

mass and attitude configurations, and different boom attitudes and extension positions 

should be studied.  If possible, some further tests should be compared to raw flight test 

data.  Comparisons between the available flight test data and tanker behavior (attitude 

and body rates) proved to be virtually non-existent due to limitations of the available 

data.  Also, any real world position, rate, and aerodynamic limits, along with the 

ruddevator control system, should be added to the boom portion of the model. 
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Refinements to the model could also improve its accuracy.  For example, 

Kunz/Smith table lookup and interpolation to find the lift and drag coefficients would 

more accurately represent the true forces generated by the ruddevators.  A different 

numerical integration scheme might also be useful and might be able to add to the 

efficiency of the model as well.   

 If the model is intended for use in real time simulations involving pilots and 

boom operators, this particular model will not be useful.  The efficiency of the model 

could be improved greatly.  The best case scenario would be for the entire model to be 

converted into Simulink blocks.  If the embedded Matlab functions are to be kept in 

place, the inputs to those blocks could be reworked to remove repetitive declarations and 

calculations therein.  Improving the efficiency of the model would be especially 

important when the next few steps of AAR research are carried out 

 A model should be developed that incorporates a receiver aircraft connected to 

the tanker in an aerial refueling situation to investigate the interaction of the three bodies 

together.  Just as the in development of this model, a new set of EOMs must be 

developed in a manner that will allow for integration with this model or an improvement 

on it.  The joint coordinate and velocity transformation methods could possibly be 

adapted to include the receiver aircraft so that only one new set of equations would have 

to be derived.  This would allow investigation into the behavior of the three bodies 

dynamically interacting together as they would during refueling operations when the 

receiver aircraft is connected to the boom and tanker. 
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EQUATIONS OF MOTION

If the integration step is too large for 
the body rates, the quaternion can  become
 denormalized and introduce attitude errors.

  Stop the simulation if this is detected.
Skip this on the first step since the quaternion may 

not yet be normalized

OUTPORT 1
OUTPUTS 1-3

INERTIAL POSITION
RxI_ft
RyI_ft
RzI_ft

OUTPORT 2
OUTPUTS 4-6

INERTIAL VELOCITY
VxI_fps
VyI_fps
VzI_fps

OUTPORT 3
OUTPUTS 7-10
QUATERNIONS

qBtoI0 
qBtoI1 
qBtoI2 
qBtoI3

OUTPORT 4
OUTPUTS 11-13

BODY RATES
P_rps
Q_rps
R_rps

INPORT 1
INPUTS 1-3

INERTIAL ACCELS
AxI_fps2 
AyI_fps2 
AzI_fps2

 
INPORT 2

INPUTS 4-6
ANGULAR ACCELS

Pdot_rps2
Qdot_rps2
Rdot_rps2

INPORT 3
INPUTS 7-9

B Frame ACCELS
AxB_fps2 
AyB_fps2 
AzB_fps2

6
B Frame
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5
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function [MMtx_B, RHSIvec_B] = TankerMass(Imat, mass) 
  
Zmx = zeros(3,3); 
MMtx = mass*eye(3); 
IMtx = [Imat(1), Imat(4), Imat(5);... 
        Imat(4), Imat(2), Imat(6);... 
        Imat(5), Imat(6), Imat(3)]; 
MMtx_B = [[MMtx], [Zmx]; [Zmx], [IMtx]]; 
  
% Extract values from the state vector 
omegaBI_B = zeros(3,1); 
omegaBI_B(1,1) = vals(4); 
omegaBI_B(2,1) = vals(5); 
omegaBI_B(3,1) = vals(6); 
  
  
% Right-hand side inertia vector 
Mvec = zeros( 3, 1 ); 
tildeB = [     0, -omegaBI_B(3),  omegaBI_B(2); ... 
            omegaBI_B(3),     0, -omegaBI_B(1); ... 
           -omegaBI_B(2),  omegaBI_B(1),     0]; 
Ivec = tildeB*IMtx*omegaBI_B; 
RHSIvec_B = [ [Mvec]; . ..
            [Ivec]; ]; 
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function [MMtx_F, RHSIvec_F] = FixedBoom(vals) 
 
 
ENVg_I = [0; 0; 32.174];  % Gravitational acceleration vector (ft/sec^2) 
  
% Fixed boom parameters 
FBOOML = 332/12;  % fixed boom length (ft) 
FBOOMM = 756.5/norm( ENVg_I );  % slugs 
FBOOMrCG = [-228.88; 0; 0]/12;  % fixed boom center of mass (ft) 
FBOOMIXX = 0.0;  % slug-ft^2 
FBOOMIYY = 3.294e5/norm( ENVg_I );  % slug-ft^2 
FBOOMIZZ = 3.294e5/norm( ENVg_I );  % slug-ft^2 
FBOOMIXY = 0.0;  % slug-ft^2 
FBOOMIXZ = 0.0;  % slug-ft^2 
FBOOMIYZ = 0.0;  % slug-ft^2 
FBOOMrFB_B = [583.325; 0; -12.5]/12;  % fixed boom pivot location (ft) 
FBOOMnYaw_B = [0; 0; 1];  % Boom yaw axis (in the B basis) 
FBOOMnPitch_F = [0; 1; 0];  % Boom pitch axis (in the F basis) 
FBOOMDiam_in = [ 0.0, 240.0, 240.1, 332.0; ... 
                 11.0,  11.0,  21.6,  21.6]; 
FBOOMrRF_F = [-294; 0; 0]/12;  % ruddevator pivot location (ft) 
FBOOMRVc = 31/12;  % ruddevator chord (ft) 
FBOOMRVL = 61/12;  % ruddevator length (ft) 
FBOOMRVdihedral = 42*pi/180;  % ruddevator dihedral angle (rad) 
 
Mmtx = FBOOMM*eye( 3 );  
Rmtx = [0 0 0;0 0 0;0 0 0]; 
tildef = [     0, -FBOOMrCG(3),  FBOOMrCG(2); ... 
            FBOOMrCG(3),     0, -FBOOMrCG(1); . ..
           -FBOOMrCG(2),  FBOOMrCG(1),     0]; 
Rmtx = FBOOMM*tildef; 
Imtx = [ FBOOMIXX, FBOOMIXY, FBOOMIXZ; 
         FBOOMIXY, FBOOMIYY, FBOOMIYZ; 
         FBOOMIXZ, FBOOMIYZ, FBOOMIZZ ]; 
MMtx_F = [ [Mmtx], [-Rmtx]; ... 
         [Rmtx], [Imtx] ]; 
%MMtx_F = zeros(6,6); 
% Extract values from the state vector 
omegaBI_B = zeros(3,1); 
omegaBI_B(1,1) = vals(4); 
omegaBI_B(2,1) = vals(5); 
omegaBI_B(3,1) = vals(6); 
  
  
YawFdot = vals(7); 
PitchFdot = vals(8); 
yawF = vals(9); 
pitchF = vals(10); 
roll = 0; 
  
% Define the direction cosine matrices 
  
dca = zeros( 3, 3 ); 
dca(1,1) = cos( yawF )*cos( pitchF ); 
dca(1,2) = sin( yawF )*cos( pitchF ); 
dca(1,3) = -sin( pitchF ); 
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dca(2,1) = cos( yawF )*sin( pitchF )*sin( roll ) - sin( yawF )*cos( roll 
); 
dca(2,2) = sin( yawF )*sin( pitchF )*sin( roll ) + cos( yawF )*cos( roll 
); 
dca(2,3) = cos( pitchF )*sin( roll ); 
dca(3,1) = cos( yawF )*sin( pitchF )*cos( roll ) + sin( yawF )*sin( roll 
); 
dca(3,2) = sin( yawF )*sin( pitchF )*cos( roll ) - cos( yawF )*sin( roll 
); 
dca(3,3) = cos( pitchF )*cos( roll ); 
  
C_FB = dca;  %  Direction Cosine mx 
  
% Calculate the angular velocity 
omegaFB_F = C_FB*FBOOMnYaw_B*YawFdot + FBOOMnPitch_F*PitchFdot; 
omegaFI_F = omegaFB_F + C_FB*omegaBI_B; 
  
tildewFI_F = [     0,         -omegaFI_F(3),  omegaFI_F(2); ... 
                omegaFI_F(3),     0,          -omegaFI_F(1); ... 
               -omegaFI_F(2),  omegaFI_F(1),     0]; 
  
  
% Right-hand side inertia vector 
Mvec = FBOOMM*tildewFI_F*tildewFI_F*FBOOMrCG; 
Ivec = tildewFI_F*Imtx*omegaFI_F; 
RHSIvec_F = [ [Mvec]; ... 
              [Ivec]; ]; 
%RHSIvec_F = zeros(6,1); 
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function [MMtx_E, RHSIvec_E] = BoomExt(vals) 
% 
% Construct the mass/inertia matrix and the right-hand side inertia 
vector for the boom extension 
%---------------------------------------- 
  
% Extract values from state vector 
uE = vals(19); % Extension is controlled 
  
% Boom extension parameters 
EBOOML = 330/12;  % boom extension length (ft) 
EBOOMM = 460.35/32.2;  % slugs 
EBOOMrCG = [-178.84; 0; 0]/12;  % boom extension center of mass (ft) 
EBOOMIXX = 0.0;  % slug-ft^2 
EBOOMIYY = 1.414e5/32.2;  % slug-ft^2 
EBOOMIZZ = 1.414e5/32.2;  % [slug-ft^2 
EBOOMIXY = 0.0;  % slug-ft^2 
EBOOMIXZ = 0.0;  % slug-ft^2 
EBOOMIYZ = 0.0;  % slug-ft^2 
EBOOMnExt_E = [1; 0; 0];  % Boom extension axis (in the E basis) 
EBOOMrEF_F = [-2; 0; 0]/12;  % Stowed extension position (in the F 
basis) 
EBOOMD = 3.1*2/12;  % boom extension diameter (ft) 
  
FBOOMrFB_B = [583.325; 0; -12.5]/12;  % fixed boom pivot location (ft) 
FBOOMnYaw_B = [0; 0; 1];  % Boom yaw axis (in the B basis) 
FBOOMnPitch_F = [0; 1; 0];  % Boom pitch axis (in the F basis) 
  
 
% Contributions from fuel during extension 
fuel = 0.14546;  fuel distributed mass (slug/ft)  %
fmass = fuel*uE; 
  
% Combined boom extension mass 
mass = EBOOMM + fmass; 
  
% Combined boom extension center of mass 
rCG = (EBOOMM*EBOOMrCG + fmass*[uE/2; 0; 0])/mass; 
  
% Combined boom extension moments of inertia 
IYY = EBOOMIYY + (fmass*(uE/2)^2)/3; 
IZZ = EBOOMIZZ + (fmass*(uE/2)^2)/3; 
  
% Construct the mass/inertia matrix in the stowed position 
Mmtx = mass*eye( 3 ); 
Rmtx = [0 0 0;0 0 0;0 0 0]; 
tildee = [     0,   -rCG(3),  rCG(2); ... 
            rCG(3),     0,   -rCG(1); ... 
           -rCG(2),  rCG(1),     0]; 
Rmtx = EBOOMM*tildee; 
  
Imtx = [ EBOOMIXX, EBOOMIXY, EBOOMIXZ; 
         EBOOMIXY,       IYY, EBOOMIYZ; 
         EBOOMIXZ, EBOOMIYZ,       IZZ ]; 
MMtx_E = [ [Mmtx], [-Rmtx]; ... 
           [Rmtx], [Imtx] ]; 
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%MMtx_E = zeros(6,6); 
 
% Extract values from the state vector 
omegaBI_B = zeros(3,1); 
omegaBI_B(1,1) = vals(4); 
omegaBI_B(2,1) = vals(5); 
omegaBI_B(3,1) = vals(6); 
  
YawFdot = vals(7); 
PitchFdot = vals(8); 
yawF = vals(9); 
pitchF = vals(10); 
roll = 0; 
  
% Define the direction cosine matrices 
  
dca = zeros( 3, 3 ); 
dca(1,1) = cos( yawF )*cos( pitchF ); 
dca(1,2) = sin( yawF )*cos( pitchF ); 
dca(1,3) = -sin( pitchF ); 
dca(2,1) = cos( yawF )*sin( pitchF )*sin( roll ) - sin( yawF )*cos( roll 
); 
dca(2,2) = sin( yawF )*sin( pitchF )*sin( roll ) + cos( yawF )*cos( roll 
); 
dca(2,3) = cos( pitchF )*sin( roll ); 
dca(3,1) = cos( yawF )*sin( pitchF )*cos( roll ) + sin( yawF )*sin( roll 
); 
dca(3,2) = sin( yawF )*sin( pitchF )*cos( roll ) - cos( yawF )*sin( roll 
); 
dca(3,3) = cos( pitchF )*cos( roll ); 
  
C_FB = dca;  %  Direction Cosine mx 
C_EF = eye( 3 ); 
C_EB = C_EF*C_FB; 
  
% Calculate the angular velocity 
omegaEF_E = zeros( 3, 1 ); 
omegaFB_F = C_FB*FBOOMnYaw_B*YawFdot + FBOOMnPitch_F*PitchFdot; 
omegaEI_E = omegaEF_E + C_EF*omegaFB_F + C_EB*omegaBI_B; 
  
tildewEI_E = [     0,         -omegaEI_E(3),  omegaEI_E(2); ... 
                omegaEI_E(3),     0,          -omegaEI_E(1); ... 
               -omegaEI_E(2),  omegaEI_E(1),     0]; 
  
  
% Right-hand side inertia vector 
Mvec = mass*tildewEI_E*tildewEI_E*rCG; 
Ivec = tildewEI_E*Imtx*omegaEI_E; 
RHSIvec_E = [ [Mvec]; . ..
            [Ivec]; ]; 
%RHSIvec_E = zeros(6,1); 
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function [fdragF_F, mdragF_F, fgravF_F, mgravF_F ] = 
FixedBoomDrag_Gravity(vals) 
% 
% Calculate the drag/gravity forces/moments on the fixed boom. 
% 
%---------------------------------------- 
 % Extract values from the state vector 
%Tanker Velocity in the I frame 
vBI_I = zeros(3,1); 
vBI_I(1,1) = vals(1); 
vBI_I(2,1) = vals(2); 
vBI_I(3,1) = vals(3); 
%Tanker angular velocity in the B frame 
omegaBI_B = zeros(3,1); 
omegaBI_B(1,1) = vals(4); 
omegaBI_B(2,1) = vals(5); 
omegaBI_B(3,1) = vals(6); 
%  Tanker Euler Angles 
yawB = vals(13); 
pitchB = vals(12)  ;
rollB = vals(11); 
%  Fixed Boom angular Rates 
YawFdot = vals(7); 
PitchFdot = vals(8); 
%  Fixed Boom Attitude 
yawF = vals(9); 
pitchF = vals(10); 
rollF = 0; 
  
%  Atmosperic data 
ENVrho = vals(14); % density;  % Air density at sea level (slug/ft^3) 
ENVa = vals(15); %vsound;  % Speed of sound (ft/sec) 
% visc from the original AFRL program does not update (comes in as 0) 
ENVvisc = 3.21596084e-7; % vals(16);  %visc;  % Viscosity (lbf-sec/ft^2) 
ENVg_I = [0; 0; 32.174];  % Gravitational acceleration vector (ft/sec^2) 
 
FBOOMnYaw_B = [0; 0; 1];  % Boom yaw axis (in the B basis) 
FBOOMnPitch_F = [0; 1; 0];  % Boom pitch axis (in the F basis) 
FBOOMrFB_B = [583.325; 0; -12.5]/12;  % fixed boom pivot location (ft) 
FBOOML = 332/12;  % fixed boom length (ft) 
FBOOMM = 756.5/32.2;  % slugs 
FBOOMrCG = [-228.88; 0; 0]/12;  % fixed boom center of mass (ft) 
FBOOMDiam_in = [ 0.0, 240.0, 240.1, 332.0; ... 
                 11.0,  11.0,  21.6,  21.6]; 
% Define the direction cosine matrices 
  
dca = zeros( 3, 3 ); 
dca(1,1) = cos( yawB )*cos( pitchB ); 
dca(1,2) = sin( yawB )*cos( pitchB ); 
dca(1,3) = -sin( pitchB ); 
dca(2,1) = cos( yawB )*sin( pitchB )*sin( rollB ) - sin( yawB )*cos( 
rollB ); 
dca(2,2) = sin( yawB )*sin( pitchB )*sin( rollB ) + cos( yawB )*cos( 
rollB ); 
dca(2,3) = cos( pitchB )*sin( rollB ); 
dca(3,1) = cos( yawB )*sin( pitchB )*cos( rollB ) + sin( yawB )*sin( 
rollB ); 
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dca(3,2) = sin( yawB )*sin( pitchB )*cos( rollB ) - cos( yawB )*sin( 
rollB ); 
dca(3,3) = cos( pitchB )*cos( rollB ); 
C_BI = dca; 
  
dca = zeros( 3, 3 ); 
dca(1,1) = cos( yawF )*cos( pitchF ); 
dca(1,2) = sin( yawF )*cos( pitchF ); 
dca(1,3) = -sin( pitchF ); 
dca(2,1) = cos( yawF )*sin( pitchF )*sin( rollF ) - sin( yawF )*cos( 
rollF ); 
dca(2,2) = sin( yawF )*sin( pitchF )*sin( rollF ) + cos( yawF )*cos( 
rollF ); 
dca(2,3) = cos( pitchF )*sin( rollF ); 
dca(3,1) = cos( yawF )*sin( pitchF )*cos( rollF ) + sin( yawF )*sin( 
rollF ); 
dca(3,2) = sin( yawF )*sin( pitchF )*cos( rollF ) - cos( yawF )*sin( 
rollF ); 
dca(3,3) = cos( pitchF )*cos( rollF ); 
C_FB = dca; 
  
C_FI = C_FB*C_BI; 
  
% Define the velocities and angular velocities 
vBI_B = C_BI*vBI_I; 
omegaFB_F = C_FB*FBOOMnYaw_B*YawFdot + FBOOMnPitch_F*PitchFdot; 
omegaFI_F = omegaFB_F + C_FB*omegaBI_B; 
  
x0 = FBOOML; 
x1 = 0; 
x = linspace(-x0, x1);   
vpI_F = [0;0;0]; 
  
  
tildeFBOOMrFB_B = [     0,         -FBOOMrFB_B(3),  FBOOMrFB_B(2); ... 
                   FBOOMrFB_B(3),     0,           -FBOOMrFB_B(1); ... 
                   -FBOOMrFB_B(2),  FBOOMrFB_B(1),     0]; 
  
dragY = zeros(1,length(x)); 
dragZ = zeros(1,length(x)); 
momentY = zeros(1,length(x)); 
momentZ = zeros(1,length(x)); 
for j = 1:1:length(x) 
    tilderpF_F = [ 0,     -0,    0; ... 
                   0,      0,   -x(j); ... 
                  -0,     x(j),  0]; 
    vpI_F = C_FB*(vBI_B - tildeFBOOMrFB_B*omegaBI_B) ... 
        - tilderpF_F*omegaFI_F; 
    Vy = vpI_F(2); 
    Vz = vpI_F(3); 
    V = sqrt( Vy^2 + Vz^2); 
    % Calculate the cross section drag coefficient 
    if( V > 1.0e-5 ) 
      diam = interp1( FBOOMDiam_in(1,:)/12, FBOOMDiam_in(2,:)/12, -x(j) 
); 
      Re = ENVrho*V*diam/ENVvisc; 
      if( Re <= 1 ) 
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        Cd = 8*pi/(Re*(0.5 - 0.577216 + log(8/Re))); 
      elseif( Re <= 1.0e5 ) 
        Cd = 1 + 10/Re^(2/3); 
      elseif( Re <= 2.5e5 ) 
        Cd = 1 - 0.82*((Re - 1.0e5)/(2.5e5 - 1.0e5))^2; 
      elseif( Re <= 6.0e5 ) 
        Cd = 0.18; 
      elseif( Re <= 4.0e6 ) 
        Cd = 0.18*(Re/6.0e5)^0.63; 
      else 
        Cd = 0.6; 
      end   
    %  Calculate the total drag force per unit length 
    drag = (ENVrho/2)*diam*Cd*(V^2); 
    %  Calculate the components of the drag vector for integration 
    dragY(1,j) = -drag*Vy/V; 
    dragZ(1,j) = -drag*Vz/V; 
    else 
      dragY(1,j) = 0; 
      dragZ(1,j) = 0; 
    end 
    totalmom = cross([x(j);0;0], [0; dragY(1,j); dragZ(1,j)]); 
    momentY(1,j) = totalmom(2);    
    momentZ(1,j) = totalmom(3); 
     
end 
  
%  Trapezoidal Rule for numerical integrattion 
areaDy = 0; 
areaDz = 0; 
areaMy = 0; 
areaMz = 0; 
for j = 1:1:length(x)-1 
    x1 = x(j); 
    x2 = x(j+1); 
    y1 = dragY(j); 
    y2 = dragY(j+1); 
    z1 = dragZ(j); 
    z2 = dragZ(j+1); 
    My1 = momentY(j); 
    My2 = momentY(j+1); 
    Mz1 = momentZ(j); 
    Mz2 = momentZ(j+1); 
    areaDy = areaDy + (y2+y1)*(x2-x1)/2; 
    areaDz = areaDz + (z2+z1)*(x2-x1)/2; 
    areaMy = areaMy + (My2+My1)*(x2-x1)/2; 
    areaMz = areaMz + (Mz2+Mz1)*(x2-x1)/2; 
end 
     
fdragF_F = [0; areaDy; areaDz];  %  Vector of drag force on the boom (no 
ruddervator contribution) 
mdragF_F = [0; areaMy; areaMz];  %  Vector of moments on the boom due to 
drag (no ruddervator contribution) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
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%           GRAVITY VECTOR CALCULATIONS FOR THE FIXED BOOM                
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
  
  
% Define the gravitational vector 
gVec_F = C_FI*ENVg_I; 
  
% Calculate the force acting at the boom pivot (F) 
fgravF_F = FBOOMM*gVec_F; 
  
% Calculate the moment acting about the boom pivot (F) 
rCF_F = FBOOMrCG; 
mgravF_F = cross( rCF_F, fgravF_F );  
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function [frvL_F, mrvL_F ] = LeftRuddervator(vals, TabCL, TabCD, 

timecount) 

 
%Tanker Velocity in the I frame 
vBI_I = zeros(3,1); 
vBI_I(1,1) = vals(1); 
vBI_I(2,1) = vals(2); 
vBI_I(3,1) = vals(3); 
%Tanker angular velocity in the B frame 
omegaBI_B = zeros(3,1); 
omegaBI_B(1,1) = vals(4); 
omegaBI_B(2,1) = vals(5); 
omegaBI_B(3,1) = vals(6); 
%  Tanker Euler Angles 
yawB = vals(13); 
pitchB = vals(12)  ;
rollB = vals(11); 
%  Fixed Boom angular Rates 
YawFdot = vals(7); 
PitchFdot = vals(8); 
%  Fixed Boom Attitude 
yawF = vals(9); 
pitchF = vals(10); 
rollF = 0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
%  Ruddervator Angle Setup; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
  
theta = vals(17);  %Use this to use a Simulink input such as step 
  
  
%This block is the ruddevator control pattern for the 'elevation' test. 
%{ 
rvang = [-32, -32, -24, -24, -39, -39, -44, -44, -31];  % vector of LRV 
position based off test data 
shiftrvang = (rvang+9.32)*pi/180;  %  Force deflections to start at the 
sim trim condition 
xvec = [0, 5, 20, 30, 45, 52, 60, 67, 80];  %  Vector showing the time 
of each position from the above vector 
theta = interp1(xvec, shiftrvang, timecount);  %  linearly interpolates 
to find the LRV position at a certain time 
%} 
%%%%%%%%%%%%%% 
  
%This block is the ruddevator control pattern for the 'azimuth' test 
data for the same ruddevator deflections 
%{ 
%  Use this block to define a control position schedule (rvang) 
according to time (xvec) 
rvang = [-22.68, -22.68, -21.68, -31.68, -31.68, -23.18, -21.18, -15.18, 
-13.18, -21.93, -22.18, -22.18]*pi/180; % vector of RRV position based 
off test data 
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xvec = [0, 20, 21.25, 28, 37, 42.5, 49, 54, 62.5, 68, 75, 80 ];  %  
Vector showing the time of each position from the above vector 
theta = interp1(xvec, rvang, timecount);  %  linearly interpolates to 
find the LRV position at a certain time 
%%%%%%%%%%%%%%% 
%} 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
%  Atmosperic data 
ENVrho = vals(14); % density;  % Air density at sea level (slug/ft^3) 
ENVa = vals(15); %vsound;  % Speed of sound (ft/sec) 
ENVvisc = vals(16);  %visc;  % Viscosity (lbf-sec/ft^2) 
ENVg_I = [0; 0; 32.174];  % Gravitational acceleration vector (ft/sec^2) 
  
FBOOMnYaw_B = [0; 0; 1];  % Boom yaw axis (in the B basis) 
FBOOMnPitch_F = [0; 1; 0];  % Boom pitch axis (in the F basis) 
FBOOMrFB_B = [583.325; 0; -12.5]/12;  % fixed boom pivot location (ft) 
FBOOML = 332/12;  % fixed boom length (ft) 
FBOOMM = 756.5/32.2;  % slugs 
FBOOMrCG = [-228.88; 0; 0]/12;  % fixed boom center of mass (ft) 
FBOOMDiam_in = [ 0.0, 240.0, 240.1, 332.0; ... 
                 11.0,  11.0,  21.6,  21.6]; 
FBOOMrRF_F = [-294; 0; 0]/12;  % ruddevator pivot location (ft) 
FBOOMRVc = 31/12;  % ruddevator chord (ft) 
FBOOMRVL = 61/12;  % ruddevator length (ft) 
FBOOMRVdihedral = 42*pi/180;  % ruddevator dihedral angle (rad) 
FBOOMRVTabCL = TabCL; 
FBOOMRVTabCD = TabCD; 
FBOOMRVCtrl = 0;  %boomCtrl(:,1:3);  % ruddevator control angles (deg) 
  
  
% Define the direction cosine matrices 
  
dca = zeros( 3, 3 ); 
dca(1,1) = cos( yawB )*cos( pitchB ); 
dca(1,2) = sin( yawB )*cos( pitchB ); 
dca(1,3) = -sin( pitchB ); 
dca(2,1) = cos( yawB )*sin( pitchB )*sin( rollB ) - sin( yawB )*cos( 
rollB ); 
dca(2,2) = sin( yawB )*sin( pitchB )*sin( rollB ) + cos( yawB )*cos( 
rollB ); 
dca(2,3) = cos( pitchB )*sin( rollB ); 
dca(3,1) = cos( yawB )*sin( pitchB )*cos( rollB ) + sin( yawB )*sin( 
rollB ); 
dca(3,2) = sin( yawB )*sin( pitchB )*cos( rollB ) - cos( yawB )*sin( 
rollB ); 
dca(3,3) = cos( pitchB )*cos( rollB ); 
C_BI = dca; 
  
dca = zeros( 3, 3 ); 
dca(1,1) = cos( yawF )*cos( pitchF ); 
dca(1,2) = sin( yawF )*cos( pitchF ); 
dca(1,3) = -sin( pitchF ); 
dca(2,1) = cos( yawF )*sin( pitchF )*sin( rollF ) - sin( yawF )*cos( 
rollF ); 
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dca(2,2) = sin( yawF )*sin( pitchF )*sin( rollF ) + cos( yawF )*cos( 
rollF ); 
dca(2,3) = cos( pitchF )*sin( rollF ); 
dca(3,1) = cos( yawF )*sin( pitchF )*cos( rollF ) + sin( yawF )*sin( 
rollF ); 
dca(3,2) = sin( yawF )*sin( pitchF )*cos( rollF ) - cos( yawF )*sin( 
rollF ); 
dca(3,3) = cos( pitchF )*cos( rollF ); 
C_FB = dca; 
  
C_FI = C_FB*C_BI; 
  
% Define the velocities and angular velocities 
vBI_B = C_BI*vBI_I; 
omegaFB_F = C_FB*FBOOMnYaw_B*YawFdot + FBOOMnPitch_F*PitchFdot; 
omegaFI_F = omegaFB_F + C_FB*omegaBI_B; 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%           FORCE VECTOR CALCULATIONS FOR THE RUDDERVATORS                
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                  Left Ruddervator                            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
yaw = 0; pitch = 0; 
roll = FBOOMRVdihedral; 
dca = zeros( 3, 3 ); 
dca(1,1) = cos( yaw )*cos( pitch ); 
dca(1,2) = sin( yaw )*cos( pitch ); 
dca(1,3) = -sin( pitch ); 
dca(2,1) = cos( yaw )*sin( pitch )*sin( roll ) - sin( yaw )*cos( roll ); 
dca(2,2) = sin( yaw )*sin( pitch )*sin( roll ) + cos( yaw )*cos( roll ); 
dca(2,3) = cos( pitch )*sin( roll ); 
dca(3,1) = cos( yaw )*sin( pitch )*cos( roll ) + sin( yaw )*sin( roll ); 
dca(3,2) = sin( yaw )*sin( pitch )*cos( roll ) - cos( yaw )*sin( roll ); 
dca(3,3) = cos( pitch )*cos( roll ); 
  
C_WF = dca; 
C_WB = C_WF*C_FB; 
C_FW = C_WF'; 
  
y0 = -FBOOMRVL; 
y1 = -interp1( FBOOMDiam_in(1,:)/12, FBOOMDiam_in(2,:)/12, ... 
                 -FBOOMrRF_F(1) )/2; 
y = linspace(y0, y1);   %  Integration limits 
tildeFBOOMrFB_B = [     0,         -FBOOMrFB_B(3),  FBOOMrFB_B(2); ... 
                   FBOOMrFB_B(3),     0,           -FBOOMrFB_B(1); ... 
                   -FBOOMrFB_B(2),  FBOOMrFB_B(1),     0]; 
  
C_WZ = zeros(3,3); 
df_W = zeros(3,1); 
df_Wx = zeros(1, length(y)); 
df_Wz = zeros(1, length(y)); 
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dm_Wx = zeros(1, length(y)); 
dm_Wz = zeros(1, length(y)); 
AoAvecCL = [TabCL(2:40, 1)]; 
AoAvecCD = [TabCD(2:56, 1)]; 
for j = 1:1:length(y) 
    rpF_F = FBOOMrRF_F + C_FW*[0;y(j);0    tilderpF_F = [     0,       -
rpF_F(3),    rpF_F(2); ... 
                   rpF_F(3),     0,          -rpF_F(1); ... 
                   -rpF_F(2),   rpF_F(1),      0]; 
    vpI_W = C_WB*(vBI_B - tildeFBOOMrFB_B*omegaBI_B) ... 
            - C_WF*tilderpF_F*omegaFI_F; 
    V = vpI_W; 
    VxVy = sign( V(1) )*sqrt( V(1)^2 + V(2)^2 ); 
    SweepFactor = abs( V(1)/VxVy ); 
    phi = atan2( V(3), VxVy ); 
    AoA = atan2( SweepFactor*sin( theta ), cos( theta ) ) + phi; 
    shiftAoA = (abs( AoA ) > pi)*sign( AoA )*(2*pi); 
    AoA = AoA - shiftAoA; 
    AoAdeg = AoA*180/pi; 
    % Calculate the section Mach number 
    Vnorm = norm( V ); 
    Mach = abs( Vnorm/ENVa ); 
        %  Interpolate from the C81 tables (this is where the 2D 
interpolation fn was  moved to one.  Can’t use interp2 in an embedded fn 
    CLvec = zeros(39,1); 
    CDvec = zeros(55,1); 
    if Mach >0 & Mach <= .1 
        CLvec = [TabCL(2:40, 2)]; 
        CDvec = [TabCD(2:56, 2)]; 
    elseif Mach >.1 && Mach <= .25 
        CLvec = [TabCL(2:40, 3)]; 
        CDvec = [TabCD(2:56, 3)]; 
     
    elseif Mach >.25 && Mach <= .35 
        CLvec = [TabCL(2:40, 4)]; 
        CDvec = [TabCD(2:56, 4)]; 
     
    elseif Mach >.35 && Mach <= .45 
        CLvec = [TabCL(2:40, 5)]; 
        CDvec = [TabCD(2:56, 5)]; 
     
    elseif Mach >.45 && Mach <= .55 
        CLvec = [TabCL(2:40, 6)]; 
        CDvec = [TabCD(2:56, 6)]; 
    
    elseif Mach >.55 && Mach <= .  8
        CLvec = [TabCL(2:40, 7)]; 
        CDvec = [TabCD(2:56, 7)]; 
    
    elseif Mach >.8 && Mach <= 1 
        CLvec = [TabCL(2:40, 8)]; 
        CDvec = [TabCD(2:56, 8)]; 
    end 
    k0 = CLvec; 
    g0 = CDvec; 
    CL = interp1(AoAvecCL, k0, AoAdeg); 
    CD = interp1(AoAvecCD, g0, AoAdeg); 
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    % Calculate the section forces 
       
    df_Zx = (ENVrho/2)*(Vnorm^2)*FBOOMRVc*CD; 
    df_Zz = (ENVrho/2)*(Vnorm^2)*FBOOMRVc*CL; 
    yaw = 0; roll = 0; 
    pitch = pi - phi; 
    dca = zeros( 3, 3 ); 
    dca(1,1) = cos( yaw )*cos( pitch ); 
    dca(1,2) = sin( yaw )*cos( pitch ); 
    dca(1,3) = -sin( pitch ); 
    dca(2,1) = cos( yaw )*sin( pitch )*sin( roll ) - sin( yaw )*cos( 
roll ); 
    dca(2,2) = sin( yaw )*sin( pitch )*sin( roll ) + cos( yaw )*cos( 
roll ); 
    dca(2,3) = cos( pitch )*sin( roll ); 
    dca(3,1) = cos( yaw )*sin( pitch )*cos( roll ) + sin( yaw )*sin( 
roll ); 
    dca(3,2) = sin( yaw )*sin( pitch )*cos( roll ) - cos( yaw )*sin( 
roll ); 
    dca(3,3) = cos( pitch )*cos( roll ); 
    C_WZ = dca; 
    df_W = C_WZ*[df_Zx;0;df_Zz]; 
    df_Wx(1,j) = df_W(1);   %  vector of differential forces to 
integrate 
    df_Wz(1,j) = df_W(3);   %  vector of differential forces to 
integrate 
     
    totalmom = cross([0; y(j); 0], [df_Wx(1,j); 0; df_Wz(1,j)]);   
    dm_Wx(1,j) = totalmom(1);   %  vector of differential moments to 
integrate 
    dm_Wz(1,j) = totalmom(3);  %  vector of differential moments to 
integrate 
end 
  
%  Trapezoidal Rule for numerical integrattion 
areaDx = 0; 
areaDz = 0; 
areaMx = 0; 
areaMz = 0; 
for j = 1:1:length(y)-1 
    x1 = y(j); 
    x2 = y(j+1); 
    y1 = df_Wx(j); 
    y2 = df_Wx(j+1); 
    z1 = df_Wz(j); 
    z2 = df_Wz(j+1)  ;
    Mx1 = dm_Wx(j); 
    Mx2 = dm_Wx(j+1); 
    Mz1 = dm_Wz(j); 
    Mz2 = dm_Wz(j+1); 
    areaDx = areaDx + (y2+y1)*(x2-x1)/2; 
    areaDz = areaDz + (z2+z1)*(x2-x1)/2; 
    areaMx = areaMx + (Mx2+Mx1)*(x2-x1)/2; 
    areaMz = areaMz + (Mz2+Mz1)*(x2-x1)/2; 
end 
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frvW_W = [areaDx; 0; areaDz];  %  Vector of force on the LEFT 
ruddervator (in the W basis) 
mrvW_W = [areaMx; 0; areaMz];  %  Vector of moments on the LEFT 
ruddervator (in the W basis) 
    
frvL_F = C_FW*frvW_W;   %  Vector of force on the LEFT ruddervator (in 
the F basis) 
mrvL_F = C_FW*mrvW_W;   %  Vector of moments on the LEFT ruddervator (in 
the F basis) 
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function [frvR_F, mrvR_F ] = RightRuddervator( vals, TabCL, TabCD, 
timecount) 
% 
% Calculate the force/moment contribution of the right RV 
% 
%---------------------------------------- 
%Tanker Velocity in the I frame 
  
vBI_I = zeros(3,1); 
vBI_I(1,1) = vals(1); 
vBI_I(2,1) = vals(2); 
vBI_I(3,1) = vals(3); 
  
%Tanker angular velocity in the B frame 
omegaBI_B = zeros(3,1); 
omegaBI_B(1,1) = vals(4); 
omegaBI_B(2,1) = vals(5); 
omegaBI_B(3,1) = vals(6); 
%  Tanker Euler Angles 
yawB = vals(13); 
pitchB = vals(12); 
rollB = vals(11); 
%  Fixed Boom angular Rates 
YawFdot = vals(7); 
PitchFdot = vals(8); 
%  Fixed Boom Attitude 
yawF = vals(9); 
pitchF = vals(10); 
rollF = 0; 
%  Ruddervator Angle; 
theta = vals(18);  % Use this if you want to use a step or ramp input 
%%%%%%%%% 
  
%  Ruddervator Angle;  Use this for the flight test data 
  
%  This block is the ruddevator control pattern for the 'elevation' test 
data for the same ruddevator deflections 
%{ 
rvang = [-32, -32, -24, -24, -39, -39, -44, -44, -31];  % vector of RRV 
position based off test data 
shiftrvang = (rvang+9.32)*pi/180;  %  Force deflections to start at the 
trim condition 
xvec = [0, 5, 20, 30, 45, 52, 60, 67, 80];  %  Vector showing the time 
of each position from the above vector 
theta = interp1(xvec, shiftrvang, timecount);  %  linearly interpolates 
to find the RRV position at a certain time 
%%%%%%%%%%%%%%%% 
%} 
  
%This block is the ruddevator control pattern for the 'azimuth' test 
data for the same ruddevator deflections 
%{ 
rvang = [-22.68, -22.68, -23.68, -14.68, -14.68, -22.68, -24.18, -29.18, 
-31.43, -22.43, -22.18, -22.18]*pi/180; % vector of RRV position based 
off test data 
xvec = [0, 20, 21.25, 28, 37, 42.5, 49, 54, 62.5, 68, 75, 80, ];  %  
Vector showing the time of each position from the above vector 
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theta = interp1(xvec, rvang, timecount);  %  linearly interpolates to 
find the RRV position at a certain time 
%} 
%%%%%%%%%%%%%%%%%%% 
  
%  Atmosperic data 
ENVrho = vals(14); % density;  % Air density at sea level (slug/ft^3) 
ENVa = vals(15); %vsound;  % Speed of sound (ft/sec) 
ENVvisc = vals(16);  %visc;  % Viscosity (lbf-sec/ft^2) 
ENVg_I = [0; 0; 32.174];  % Gravitational acceleration vector (ft/sec^2) 
  
FBOOMnYaw_B = [0; 0; 1];  % Boom yaw axis (in the B basis) 
FBOOMnPitch_F = [0; 1; 0];  % Boom pitch axis (in the F basis) 
FBOOMrFB_B = [583.325; 0; -12.5]/12;  % fixed boom pivot location (ft) 
FBOOML = 332/12;  % fixed boom length (ft) 
FBOOMM = 756.5/32.2;  % slugs 
FBOOMrCG = [-228.88; 0; 0]/12;  % fixed boom center of mass (ft) 
FBOOMDiam_in = [ 0.0, 240.0, 240.1, 332.0; ... 
                 11.0,  11.0,  21.6,  21.6]; 
FBOOMrRF_F = [-294; 0; 0]/12;  % ruddevator pivot location (ft) 
FBOOMRVc = 31/12;  % ruddevator chord (ft) 
FBOOMRVL = 61/12;  % ruddevator length (ft) 
FBOOMRVdihedral = 42*pi/180;  % ruddevator dihedral angle (rad) 
FBOOMRVTabCL = TabCL; 
FBOOMRVTabCD = TabCD; 
FBOOMRVCtrl = 0;  %boomCtrl(:,1:3);  % ruddevator control angles (deg) 
  
  
% Define the direction cosine matrices 
  
dca = zeros( 3, 3 ); 
dca(1,1) = cos( yawB )*cos( pitchB ); 
dca(1,2) = sin( yawB )*cos( pitchB ); 
dca(1,3) = -sin( pitchB ); 
dca(2,1) = cos( yawB )*sin( pitchB )*sin( rollB ) - sin( yawB )*cos( 
rollB ); 
dca(2,2) = sin( yawB )*sin( pitchB )*sin( rollB ) + cos( yawB )*cos( 
rollB ); 
dca(2,3) = cos( pitchB )*sin( rollB ); 
dca(3,1) = cos( yawB )*sin( pitchB )*cos( rollB ) + sin( yawB )*sin( 
rollB ); 
dca(3,2) = sin( yawB )*sin( pitchB )*cos( rollB ) - cos( yawB )*sin( 
rollB ); 
dca(3,3) = cos( pitchB )*cos( rollB ); 
C_BI = dca; 
  
dca = zeros( 3, 3 ); 
dca(1,1) = cos( yawF )*cos( pitchF ); 
dca(1,2) = sin( yawF )*cos( pitchF ); 
dca(1,3) = -sin( pitchF ); 
dca(2,1) = cos( yawF )*sin( pitchF )*sin( rollF ) - sin( yawF )*cos( 
rollF ); 
dca(2,2) = sin( yawF )*sin( pitchF )*sin( rollF ) + cos( yawF )*cos( 
rollF ); 
dca(2,3) = cos( pitchF )*sin( rollF ); 
dca(3,1) = cos( yawF )*sin( pitchF )*cos( rollF ) + sin( yawF )*sin( 
rollF ); 
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dca(3,2) = sin( yawF )*sin( pitchF )*cos( rollF ) - cos( yawF )*sin( 
rollF ); 
dca(3,3) = cos( pitchF )*cos( rollF ); 
C_FB = dca; 
  
C_FI = C_FB*C_BI; 
  
% Define the velocities and angular velocities 
vBI_B = C_BI*vBI_I; 
omegaFB_F = C_FB*FBOOMnYaw_B*YawFdot + FBOOMnPitch_F*PitchFdot; 
omegaFI_F = omegaFB_F + C_FB*omegaBI_B; 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%           FORCE VECTOR CALCULATIONS FOR THE RUDDERVATORS                
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                  Right Ruddervator                            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
yaw = 0; pitch = 0; 
roll = -FBOOMRVdihedral; 
dca = zeros( 3, 3 ); 
dca(1,1) = cos( yaw )*cos( pitch ); 
dca(1,2) = sin( yaw )*cos( pitch ); 
dca(1,3) = -sin( pitch ); 
dca(2,1) = cos( yaw )*sin( pitch )*sin( roll ) - sin( yaw )*cos( roll ); 
dca(2,2) = sin( yaw )*sin( pitch )*sin( roll ) + cos( yaw )*cos( roll ); 
dca(2,3) = cos( pitch )*sin( roll ); 
dca(3,1) = cos( yaw )*sin( pitch )*cos( roll ) + sin( yaw )*sin( roll ); 
dca(3,2) = sin( yaw )*sin( pitch )*cos( roll ) - cos( yaw )*sin( roll ); 
dca(3,3) = cos( pitch )*cos( roll ); 
  
C_WF = dca; 
C_WB = C_WF*C_FB; 
C_FW = C_WF'; 
  
y1 = FBOOMRVL; 
y0 = interp1( FBOOMDiam_in(1,:)/12, FBOOMDiam_in(2,:)/12, ... 
                 -FBOOMrRF_F(1) )/2; 
y = linspace(y0, y1);   %  Integration limits 
tildeFBOOMrFB_B = [     0,         -FBOOMrFB_B(3),  FBOOMrFB_B(2); ... 
                   FBOOMrFB_B(3),     0,           -FBOOMrFB_B(1); ... 
                   -FBOOMrFB_B(2),  FBOOMrFB_B(1),     0]; 
  
C_WZ = zeros(3,3); 
df_W = zeros(3,1); 
df_Wx = zeros(1, length(y)); 
df_Wz = zeros(1, length(y)); 
dm_Wx = zeros(1, length(y)); 
dm_Wz = zeros(1, length(y)); 
AoAvecCL = [TabCL(2:40, 1)]; 
AoAvecCD = [TabCD(2:56, 1)]; 
for j = 1:1:length(y) 
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    rpF_F = FBOOMrRF_F + C_FW*[0;y(j); 
    tilderpF_F = [     0,       -rpF_F(3),    rpF_F(2); ... 
                   rpF_F(3),     0,          -rpF_F(1); ... 
                   -rpF_F(2),   rpF_F(1),      0]; 
    vpI_W = C_WB*(vBI_B - tildeFBOOMrFB_B*omegaBI_B) ... 
            - C_WF*tilderpF_F*omegaFI_F; 
    V = vpI_W; 
    VxVy = sign( V(1) )*sqrt( V(1)^2 + V(2)^2 ); 
    SweepFactor = abs( V(1)/VxVy ); 
    phi = atan2( V(3), VxVy ); 
    AoA = atan2( SweepFactor*sin( theta ), cos( theta ) ) + phi; 
    shiftAoA = (abs( AoA ) > pi)*sign( AoA )*(2*pi); 
    AoA = AoA - shiftAoA  ;
    AoAdeg = AoA*180/pi; 
    % Calculate the section Mach number 
    Vnorm = norm( V ); 
    Mach = abs( Vnorm/ENVa ); 
        %  Interpolate from the C81 tables (again, can’t use interp2 in 
%an embedded fn 
    CLvec = zeros(39,1); 
    CDvec = zeros(55,1); 
    if Mach >0 & Mach <= .1 
        CLvec = [TabCL(2:40, 2)]; 
        CDvec = [TabCD(2:56, 2)]; 
    elseif Mach >.1 && Mach <= .2  5
        CLvec = [TabCL(2:40, 3)]; 
        CDvec = [TabCD(2:56, 3)]; 
     
    elseif Mach >.25 && Mach <= .35 
        CLvec = [TabCL(2:40, 4)]; 
        CDvec = [TabCD(2:56, 4)]; 
     
    elseif Mach >.35 && Mach <= .45 
        CLvec = [TabCL(2:40, 5)]; 
        CDvec = [TabCD(2:56, 5)]; 
     
    elseif Mach >.45 && Mach <= .55 
        CLvec = [TabCL(2:40, 6)]; 
        CDvec = [TabCD(2:56, 6)]; 
    
    elseif Mach >.55 && Mach <= .8 
        CLvec = [TabCL(2:40, 7)]; 
        CDvec = [TabCD(2:56, 7)]; 
    
    elseif Mach >.8 && Mach <= 1 
        CLvec = [TabCL(2:40, 8)]; 
        CDvec = [TabCD(2:56, 8)]; 
    end 
    k0 = CLvec; 
    g0 = CDvec; 
    CL = interp1(AoAvecCL, k0, AoAdeg); 
    CD = interp1(AoAvecCD, g0, AoAdeg); 
    % Calculate the section forces 
       
    df_Zx = (ENVrho/2)*(Vnorm^2)*FBOOMRVc*CD; 
    df_Zz = (ENVrho/2)*(Vnorm^2)*FBOOMRVc*CL; 
    yaw = 0; roll = 0; 
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    pitch = pi - phi; 
    dca = zeros( 3, 3 ); 
    dca(1,1) = cos( yaw )*cos( pitch ); 
    dca(1,2) = sin( yaw )*cos( pitch ); 
    dca(1,3) = -sin( pitch ); 
    dca(2,1) = cos( yaw )*sin( pitch )*sin( roll ) - sin( yaw )*cos( 
roll ); 
    dca(2,2) = sin( yaw )*sin( pitch )*sin( roll ) + cos( yaw )*cos( 
roll ); 
    dca(2,3) = cos( pitch )*sin( roll ); 
    dca(3,1) = cos( yaw )*sin( pitch )*cos( roll ) + sin( yaw )*sin( 
roll ); 
    dca(3,2) = sin( yaw )*sin( pitch )*cos( roll ) - cos( yaw )*sin( 
roll ); 
    dca(3,3) = cos( pitch )*cos( roll ); 
    C_WZ = dca; 
    df_W = C_WZ*[df_Zx;0;df_Zz]; 
    df_Wx(1,j) = df_W(1);   %  vector of differential forces to 
integrate 
    df_Wz(1,j) = df_W(3);   %  vector of differential forces to 
integrate 
 
    totalmom = cross([0; y(j); 0], [df_Wx(1,j); 0; df_Wz(1,j)]);   
    dm_Wx(1,j) = totalmom(1);   %  vector of differential moments to 
integrate 
    dm_Wz(1,j) = totalmom(3);  %  vector of differential moments to 
integrate 
end 
  
%  Trapezoidal Rule for numerical integrattion 
areaDx = 0; 
areaDz = 0; 
areaMx = 0; 
areaMz = 0; 
for j = 1:1:length(y)-1 
    x1 = y(j); 
    x2 = y(j+1); 
    y1 = df_Wx(j); 
    y2 = df_Wx(j+1); 
    z1 = df_Wz(j); 
    z2 = df_Wz(j+1)  ;
    Mx1 = dm_Wx(j); 
    Mx2 = dm_Wx(j+1); 
    Mz1 = dm_Wz(j); 
    Mz2 = dm_Wz(j+1); 
    areaDx = areaDx + (y2+y1)*(x2-x1)/2; 
    areaDz = areaDz + (z2+z1)*(x2-x1)/2; 
    areaMx = areaMx + (Mx2+Mx1)*(x2-x1)/2; 
    areaMz = areaMz + (Mz2+Mz1)*(x2-x1)/2; 
end 
     
frvW_W = [areaDx; 0; areaDz];  %  Vector of force on the LEFT 
ruddervator (in the W basis) 
mrvW_W = [areaMx; 0; areaMz];  %  Vector of moments on the LEFT 
ruddervator (in the W basis) 
    
frvR_F = C_FW*frvW_W;   %  Vector of force on the LEFT ruddervator (in 
the F basis) 
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mrvR_F = C_FW*mrvW_W;   %  Vector of moments on the LEFT ruddervator (in 
the F basis)  
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function [faeroE_E, maeroE_E, fgravE_E, mgravE_E] = 
BoomEXTENSION_Drag_Gravity( vals ) 
% 
% Calculate the aero/gravity force/moment for the boom ext 
% 
%---------------------------------------- 
%Tanker Velocity in the I frame 
vBI_I = zeros(3,1); 
vBI_I(1,1) = vals(1); 
vBI_I(2,1) = vals(2); 
vBI_I(3,1) = vals(3); 
%Tanker angular velocity in the B frame 
omegaBI_B = zeros(3,1); 
omegaBI_B(1,1) = vals(4); 
omegaBI_B(2,1) = vals(5); 
omegaBI_B(3,1) = vals(6); 
%  Tanker Euler Angles 
yawB = vals(13); 
pitchB = vals(12); 
rollB = vals(11); 
%  Fixed Boom angular Rates 
YawFdot = vals(7); 
PitchFdot = vals(8); 
%  Fixed Boom Attitude 
yawF = vals(9); 
pitchF = vals(10); 
rollF = 0; 
%  Atmosperic data 
ENVrho = vals(14); % density;  % Air density at sea level (slug/ft^3) 
ENVa = vals(15); %vsound;  % Speed of sound (ft/sec) 
ENVvisc = 3.21596084e-7;  %vals(16);  %visc;  % Viscosity (lbf-sec/ft^2) 
ENVg_I = [0; 0; 32.174];  % Gravitational acceleration vector (ft/sec^2) 
  
%  Boom Exntesion parameters 
EBOOML = 330/12;  % boom extension length (ft) 
EBOOMM = 460.35/norm( ENVg_I );  % slugs 
EBOOMrCG = [-178.84; 0; 0]/12;  % boom extension center of mass (ft) 
EBOOMnExt_E = [1; 0; 0];  % Boom extension axis (in the E basis) 
EBOOMrEF_F = [-2; 0; 0]/12;  % Stowed extension position (in the F 
basis) 
EBOOMD = 3.1*2/12;  % boom extension diameter (ft) 
%EBOOM.Ctrl = ExtControl( boomCtrl(:,[1,4]) ); 
VE = vals(20);   %  Boom extension velocity 
uE = vals(19);   %  Boom Extension Position 
  
%  Fixed Boom Parameters 
FBOOMnYaw_B = [0; 0; 1];  % Boom yaw axis (in the B basis) 
FBOOMnPitch_F = [0; 1; 0];  % Boom pitch axis (in the F basis) 
FBOOMrFB_B = [583.325; 0; -12.5]/12;  % fixed boom pivot location (ft) 
FBOOML = 332/12;  % fixed boom length (ft) 
FBOOMM = 756.5/32.2;  % slugs 
FBOOMrCG = [-228.88; 0; 0]/12;  % fixed boom center of mass (ft) 
FBOOMDiam_in = [ 0.0, 240.0, 240.1, 332.0; ... 
                 11.0,  11.0,  21.6,  21.6]; 
  
% Define the direction cosine matrices 
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dca = zeros( 3, 3 ); 
dca(1,1) = cos( yawB )*cos( pitchB ); 
dca(1,2) = sin( yawB )*cos( pitchB ); 
dca(1,3) = -sin( pitchB ); 
dca(2,1) = cos( yawB )*sin( pitchB )*sin( rollB ) - sin( yawB )*cos( 
rollB ); 
dca(2,2) = sin( yawB )*sin( pitchB )*sin( rollB ) + cos( yawB )*cos( 
rollB ); 
dca(2,3) = cos( pitchB )*sin( rollB ); 
dca(3,1) = cos( yawB )*sin( pitchB )*cos( rollB ) + sin( yawB )*sin( 
rollB ); 
dca(3,2) = sin( yawB )*sin( pitchB )*cos( rollB ) - cos( yawB )*sin( 
rollB ); 
dca(3,3) = cos( pitchB )*cos( rollB ); 
C_BI = dca; 
  
dca = zeros( 3, 3 ); 
dca(1,1) = cos( yawF )*cos( pitchF ); 
dca(1,2) = sin( yawF )*cos( pitchF ); 
dca(1,3) = -sin( pitchF ); 
dca(2,1) = cos( yawF )*sin( pitchF )*sin( rollF ) - sin( yawF )*cos( 
rollF ); 
dca(2,2) = sin( yawF )*sin( pitchF )*sin( rollF ) + cos( yawF )*cos( 
rollF ); 
dca(2,3) = cos( pitchF )*sin( rollF ); 
dca(3,1) = cos( yawF )*sin( pitchF )*cos( rollF ) + sin( yawF )*sin( 
rollF ); 
dca(3,2) = sin( yawF )*sin( pitchF )*cos( rollF ) - cos( yawF )*sin( 
rollF ); 
dca(3,3) = cos( pitchF )*cos( rollF ); 
C_FB = dca; 
  
C_FI = C_FB*C_BI; 
C_EF = eye(3); 
C_EB = C_EF*C_FB; 
C_EI = C_EF*C_FB*C_BI; 
% Define the velocities and angular velocities 
vBI_B = C_BI*vBI_I; 
vEF_E = C_EF*[-VE;0;0]; 
omegaFB_F = C_FB*FBOOMnYaw_B*YawFdot + FBOOMnPitch_F*PitchFdot; 
omegaFI_F = omegaFB_F + C_FB*omegaBI_B; 
omegaEI_E = C_EF*omegaFI_F; 
  
%  integration limits 
x1 = -FBOOML; 
x0 = x1-uE; 
  
if x1-x0 <.1 
    faeroE_E = [0;0;0]; 
    maeroE_E = [0;0;0]; 
else 
    x = linspace(x0, x1);  
    vpI_F = [0;0;0]; 
    rEF_F = EBOOMrEF_F + [-uE;0;0]; 
    tildeEBOOMrEF_F = [     0,      -rEF_F(3),   rEF_F(2); ... 
                       rEF_F(3),      0,        -rEF_F(1); ... 
                       -rEF_F(2),    rEF_F(1),     0]; 
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    tildeFBOOMrFB_B = [     0,         -FBOOMrFB_B(3),  FBOOMrFB_B(2); 
... 
                       FBOOMrFB_B(3),     0,           -FBOOMrFB_B(1); 
... 
                       -FBOOMrFB_B(2),  FBOOMrFB_B(1),     0]; 
  
  
                
    dragY = zeros(1, length(x)); 
    dragZ = zeros(1, length(x)); 
    momentY = zeros(1, length(x)); 
    momentZ = zeros(1, length(x)); 
    for j = 1:1:length(x) 
      rpE_E = [x(j);0;0] + C_EF*rEF_F; 
      tilderpE_E = [ 0,     -0,    0; ... 
                     0,      0,   -x(j); ... 
                    -0,     x(j),  0]; 
      vpI_E = C_EB*(vBI_B-tildeFBOOMrFB_B*omegaBI_B)... 
          -C_EF*tildeEBOOMrEF_F*omegaFI_F - tilderpE_E*omegaEI_E + 
vEF_E;  
      Vy = vpI_E(2); 
      Vz = vpI_E(3); 
      V = sqrt( Vy^2 + Vz^2); 
      % Calculate the cross section drag coefficient 
      if( V > 1.0e-5 ) 
        Re = ENVrho*V*EBOOMD/ENVvisc; 
        if( Re <= 1 ) 
          Cd = 8*pi/(Re*(0.5 - 0.577216 + log(8/Re))); 
        elseif( Re <= 1.0e5 ) 
          Cd = 1 + 10/Re^(2/3); 
        elseif( Re <= 2.5e5 ) 
          Cd = 1 - 0.82*((Re - 1.0e5)/(2.5e5 - 1.0e5))^2; 
        elseif( Re <= 6.0e5 ) 
          Cd = 0.18; 
        elseif( Re <= 4.0e6 ) 
          Cd = 0.18*(Re/6.0e5)^0.63; 
        else 
          Cd = 0.6; 
        end   
      % Calculate the total drag force per unit length 
      drag = (ENVrho/2)*EBOOMD*Cd*(V^2); 
      %Calculate the components of the drag vector 
      dragY(1, j) = -drag*Vy/V; 
      dragZ(1, j) = -drag*Vz/V; 
       
      else 
        dragY(1, j) = 0; 
        dragZ(1, j) = 0; 
      end 
 
    totalmom = cross([x(j);0;0], [0; dragY(1,j); dragZ(1,j)]); 
    momentY(1,j) = totalmom(2);    
    momentZ(1,j) = totalmom(3); 
      
    end 
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    %  Trapezoidal Rule for numerical integrattion 
    areaDy = 0; 
    areaDz = 0; 
    areaMy = 0; 
    areaMz = 0; 
    for j = 1:1:length(x)-1 
      x1 = x(j); 
      x2 = x(j+1); 
      y1 = dragY(j); 
      y2 = dragY(j+1); 
      z1 = dragZ(j); 
      z2 = dragZ(j+1); 
      My1 = momentY(j); 
      My2 = momentY(j+1); 
      Mz1 = momentZ(j); 
      Mz2 = momentZ(j+1); 
      areaDy = areaDy + (y2+y1)*(x2-x1)/2; 
      areaDz = areaDz + (z2+z1)*(x2-x1)/2; 
      areaMy = areaMy + (My2+My1)*(x2-x1)/2; 
      areaMz = areaMz + (Mz2+Mz1)*(x2-x1)/2; 
    end 
    faeroE_E = [0; areaDy; areaDz];  %  Vector of drag force on the boom 
extension 
    maeroE_E = [0; areaMy; areaMz];  %  Vector of moments on the boom 
extension due to drag  
end 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%           GRAVITY VECTOR CALCULATIONS FOR THE BOOM EXTENSION             
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
  
  
% Define the gravitational vector 
gVec_E = C_EI*ENVg_I; 
  
% Contributions from fuel during extension 
fuel = 0.14546;  fuel distributed mass (slug/ft)  %
fmass = fuel*uE; 
  
% Combined boom extension mass and fuel mass 
mass = EBOOMM + fmass; 
  
% Combined boom extension center of mass 
rCG_E = (EBOOMM*EBOOMrCG + fmass*[uE/2; 0; 0])/mass; 
  
% Calculate the force acting at the inboard end of the boom extension 
(E) 
fgravE_E = mass*gVec_E; 
  
% Calculate the moment acting about the inboard end of the boom 
extension (E) 
mgravE_E = cross( rCG_E, fgravE_E ); 
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function bmtx  = VelocityTransformation(vals) 
% 
% Construct the velocity transformation matrix for the system 
 
  
%  Tanker Euler Angles 
yawB = vals(13); 
pitchB = vals(12); 
rollB = vals(11); 
  
%  Fixed Boom Attitude 
yawF = vals(9); 
pitchF = vals(10); 
rollF = 0; 
  
uE = vals(19);  %   
  
FBOOMrFB_B = [583.325; 0; -12.5]/12;  % fixed boom pivot location (ft) 
FBOOMnYaw_B = [0; 0; 1];  % Boom yaw axis (in the B basis) 
FBOOMnPitch_F = [0; 1; 0];  % Boom pitch axis (in the F basis) 
EBOOMrEF_F = [-2; 0; 0]/12;  % Stowed extension position (in the F 
basis) 
EBOOMnExt_E = [1; 0; 0];  % Boom extension axis (in the E basis) 
  
  
% Define the direction cosine matrices 
  
dca = zeros( 3, 3 ); 
dca(1,1) = cos( yawB )*cos( pitchB ); 
dca(1,2) = sin( yawB )*cos( pitchB ); 
dca(1,3) = -sin( pitchB ); 
dca(2,1) = cos( yawB )*sin( pitchB )*sin( rollB ) - sin( yawB )*cos( 
rollB ); 
dca(2,2) = sin( yawB )*sin( pitchB )*sin( rollB ) + cos( yawB )*cos( 
rollB ); 
dca(2,3) = cos( pitchB )*sin( rollB ); 
dca(3,1) = cos( yawB )*sin( pitchB )*cos( rollB ) + sin( yawB )*sin( 
rollB ); 
dca(3,2) = sin( yawB )*sin( pitchB )*cos( rollB ) - cos( yawB )*sin( 
rollB ); 
dca(3,3) = cos( pitchB )*cos( rollB ); 
C_BI = dca; 
  
dca(1,1) = cos( yawF )*cos( pitchF ); 
dca(1,2) = sin( yawF )*cos( pitchF ); 
dca(1,3) = -sin( pitchF ); 
dca(2,1) = cos( yawF )*sin( pitchF )*sin( rollF ) - sin( yawF )*cos( 
rollF ); 
dca(2,2) = sin( yawF )*sin( pitchF )*sin( rollF ) + cos( yawF )*cos( 
rollF ); 
dca(2,3) = cos( pitchF )*sin( rollF ); 
dca(3,1) = cos( yawF )*sin( pitchF )*cos( rollF ) + sin( yawF )*sin( 
rollF ); 
dca(3,2) = sin( yawF )*sin( pitchF )*cos( rollF ) - cos( yawF )*sin( 
rollF ); 
dca(3,3) = cos( pitchF )*cos( rollF ); 
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C_FB = dca; 
  
C_BF = C_FB'; 
C_EF = eye( 3 ); 
C_FI = C_FB*C_BI; 
C_EI = C_EF*C_FI; 
C_EB = C_EF*C_FB; 
  
% Define the position vectors 
rEF_F = EBOOMrEF_F + [ -uE; 0; 0 ]; 
rEB_B = C_BF*rEF_F + FBOOMrFB_B; 
  
% Define the zero blocks 
zmtx = zeros( 3, 3 ); 
zvec = zeros( 3, 1 ); 
  
% Build the floating joint block for the tanker rows 
bmtx_BB = [ [C_BI], [zmtx]; ... 
            [zmtx], [eye( 3 )] ]; 
  
% Build the floating joint block for the refueling boom rows 
  
tildeFBOOMrFB_B =  [     0,            -FBOOMrFB_B(3),   FBOOMrFB_B(2); 
... 
                       FBOOMrFB_B(3),        0,          -FBOOMrFB_B(1); 
... 
                      -FBOOMrFB_B(2),     FBOOMrFB_B(1),     0]; 
bmtx_BF = [ [C_FI], [-C_FB*tildeFBOOMrFB_B]; ... 
            [zmtx], [C_FB] ]; 
  
% Build the floating joint block for the boom extension rows 
  
tilderEB_B = [     0,   -rEB_B(3),  rEB_B(2); ... 
              rEB_B(3),     0,     -rEB_B(1); ... 
             -rEB_B(2),  rEB_B(1),     0]; 
  
bmtx_BE = [ [C_EI], [-C_EB*tilderEB_B]; ... 
            [zmtx], [C_EB] ]; 
  
% Build the universal joint block for the refueling boom 
bmtx_FF = [ [zvec],              [zvec]; ... 
            [C_FB*FBOOMnYaw_B], [FBOOMnPitch_F] ]; 
  
% Build the universal joint block for the boom extension 
bmtx_FE = [ [zvec],              [zvec]; ... 
            [C_EB*FBOOMnYaw_B], [C_EF*FBOOMnPitch_F] ]; 
  
% Build the prismatic joint block for the boom extension 
bmtx_EE = [ [EBOOMnExt_E]; ... 
            [zvec] ]; 
  
% Assemble the velocity transformation matrix 
zmtx_61 = zeros( 6, 1 ); 
zmtx_62 = zeros( 6, 2 ); 
bmtx = [ [bmtx_BB], [zmtx_62], [zmtx_61]; ... 
         [bmtx_BF], [bmtx_FF], [zmtx_61]; ... 
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         [bmtx_BE], [bmtx_FE], [bmtx_EE] ]; 
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function bdotmtx = AccelerationTransformation( vals ) 
% 
% Construct the acceleration transformation matrix for the system 
% 
% Separate the required joint states 
  
  
%  Tanker Euler Angles 
yawB = vals(13); 
pitchB = vals(12)  ;
rollB = vals(11); 
  
%  Fixed Boom Attitude 
yawF = vals(9); 
pitchF = vals(10); 
rollF = 0; 
  
%  Fixed Boom angular Rates 
YawFdot = vals(7); 
PitchFdot = vals(8); 
  
FBOOMnYaw_B = [0; 0; 1];  % Boom yaw axis (in the B basis) 
FBOOMnPitch_F = [0; 1; 0];  % Boom pitch axis (in the F basis) 
FBOOMrFB_B = [583.325; 0; -12.5]/12;  % fixed boom pivot location (ft) 
EBOOMnExt_E = [1; 0; 0];  % Boom extension axis (in the E basis) 
  
% Define the direction cosine matrices 
  
dca = zeros( 3, 3 ); 
dca(1,1) = cos( yawB )*cos( pitchB ); 
dca(1,2) = sin( yawB )*cos( pitchB ); 
dca(1,3) = -sin( pitchB ); 
dca(2,1) = cos( yawB )*sin( pitchB )*sin( rollB ) - sin( yawB )*cos( 
rollB ); 
dca(2,2) = sin( yawB )*sin( pitchB )*sin( rollB ) + cos( yawB )*cos( 
rollB ); 
dca(2,3) = cos( pitchB )*sin( rollB ); 
dca(3,1) = cos( yawB )*sin( pitchB )*cos( rollB ) + sin( yawB )*sin( 
rollB ); 
dca(3,2) = sin( yawB )*sin( pitchB )*cos( rollB ) - cos( yawB )*sin( 
rollB ); 
dca(3,3) = cos( pitchB )*cos( rollB ); 
C_BI = dca; 
  
dca(1,1) = cos( yawF )*cos( pitchF ); 
dca(1,2) = sin( yawF )*cos( pitchF ); 
dca(1,3) = -sin( pitchF ); 
dca(2,1) = cos( yawF )*sin( pitchF )*sin( rollF ) - sin( yawF )*cos( 
rollF ); 
dca(2,2) = sin( yawF )*sin( pitchF )*sin( rollF ) + cos( yawF )*cos( 
rollF ); 
dca(2,3) = cos( pitchF )*sin( rollF ); 
dca(3,1) = cos( yawF )*sin( pitchF )*cos( rollF ) + sin( yawF )*sin( 
rollF ); 
dca(3,2) = sin( yawF )*sin( pitchF )*cos( rollF ) - cos( yawF )*sin( 
rollF ); 
dca(3,3) = cos( pitchF )*cos( rollF ); 
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C_FB = dca; 
  
C_EF = eye( 3 ); 
C_EB = C_EF*C_FB; 
  
% Define the angular velocities 
%Tanker angular velocity in the B frame 
omegaBI_B = zeros(3,1); 
omegaBI_B(1,1) = vals(4); 
omegaBI_B(2,1) = vals(5); 
omegaBI_B(3,1) = vals(6); 
omegaFB_F = C_FB*FBOOMnYaw_B*YawFdot + FBOOMnPitch_F*PitchFdot; 
omegaFI_F = omegaFB_F + C_FB*omegaBI_B; 
omegaFI_E = C_EF*omegaFI_F; 
  
% Build the floating joint block for the tanker 
bdotmtx_BB = zeros( 6, 6 ); 
  
% Build the floating joint block for the refueling boom 
bdotmtx_BF = zeros( 6, 6 ); 
tilde_wBI = [     0,      -omegaBI_B(3),  omegaBI_B(2); ... 
              omegaBI_B(3),     0,       -omegaBI_B(1); ... 
             -omegaBI_B(2),  omegaBI_B(1),     0]; 
tilde_omegaBI_B = [     0,       -tilde_wBI(3),  tilde_wBI(2); ... 
                    tilde_wBI(3),      0,       -tilde_wBI(1); ... 
                   -tilde_wBI(2),  tilde_wBI(1),     0]; 
  
  
BF_vec =  -C_FB*tilde_omegaBI_B*FBOOMrFB_B; 
bdotmtx_BF(1,4) = BF_vec(1); 
bdotmtx_BF(2,5) = BF_vec(2); 
bdotmtx_BF(3,6) = BF_vec(3); 
  
% Build the floating joint block for the boom extension 
bdotmtx_BE = zeros( 6, 6 ); 
  
BE_vec =  -C_EB*tilde_omegaBI_B*FBOOMrFB_B; 
bdotmtx_BE(1,4) = BE_vec(1); 
bdotmtx_BE(2,5) = BE_vec(2); 
bdotmtx_BE(3,6) = BE_vec(3); 
 
% Build the universal joint block for the refueling boom 
bdotmtx_FF = zeros( 6, 2 ); 
FF_vec1 =  C_FB*tilde_wBI*FBOOMnYaw_B; 
bdotmtx_FF(4,1) = FF_vec1(1); 
bdotmtx_FF(5,1) = FF_vec1(2); 
bdotmtx_FF(6,1) = FF_vec1(3); 
  
 
tilde_omegaFI_F = [     0,       -omegaFI_F(3),  omegaFI_F(2); ... 
                    omegaFI_F(3),      0,        -omegaFI_F(1); ... 
                   -omegaFI_F(2),  omegaFI_F(1),     0]; 
  
FF_vec2 = tilde_omegaFI_F*FBOOMnPitch_F; 
bdotmtx_FF(4,2) = FF_vec2(1); 
bdotmtx_FF(5,2) = FF_vec2(2); 
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bdotmtx_FF(6,2) = FF_vec2(3); 
% Build the universal joint block for the boom extension 
bdotmtx_FE = zeros( 6, 2 ); 
  
FE_vec1 =  C_EB*tilde_wBI*FBOOMnYaw_B; 
bdotmtx_FE(4,1) = FE_vec1(1); 
bdotmtx_FE(5,1) = FE_vec1(2); 
bdotmtx_FE(6,1) = FE_vec1(3); 
  
 
FE_vec2 = C_EF*tilde_omegaFI_F*FBOOMnPitch_F; 
bdotmtx_FE(4,2) = FE_vec2(1); 
bdotmtx_FE(5,2) = FE_vec2(2); 
bdotmtx_FE(6,2) = FE_vec2(3); 
 
% Build the prismatic joint block for the boom extension 
bdotmtx_EE = zeros( 6, 1 ); 
tilde_omegaFI_E = [     0,       -omegaFI_E(3),  omegaFI_E(2); ... 
                    omegaFI_E(3),      0,        -omegaFI_E(1); ... 
                   -omegaFI_E(2),  omegaFI_E(1),     0]; 
  
  
EE_vec =  tilde_omegaFI_E*EBOOMnExt_E; 
bdotmtx_EE(1,1) = EE_vec(1); 
bdotmtx_EE(2,1) = EE_vec(2); 
bdotmtx_EE(3,1) = EE_vec(3); 
  
 
% Assemble the acceleration transformation matrix 
zeromtx_61 = zeros( 6, 1 ); 
zeromtx_62 = zeros( 6, 2 ); 
bdotmtx = [ [bdotmtx_BB], [zeromtx_62], [zeromtx_61]; ... 
            [bdotmtx_BF], [bdotmtx_FF], [zeromtx_61]; ... 
            [bdotmtx_BE], [bdotmtx_FE], [bdotmtx_EE] ]; 
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function MMtx_BFE = uncoupled18x18(MMtx_B, MMtx_F, MMtx_E) 
 
Zmx = zeros(6,6); 
MMtx_BFE = [[MMtx_B], [Zmx], [Zmx];... 
           [Zmx], [MMtx_F], [Zmx];... 
           [Zmx],  [Zmx],  [MMtx_E]]; 
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function ForceVector  = combined(faeroB_B, maeroB_B, allforces) 
  
%{  
allforces(1:3) = Fixed Drag Force 
allforces(4:6) = Fixed drag moments 
allforces(7:9) = Fixed gravity forces 
allforces(10:12) = Fixed gravity moments 
allforces(13:15) = Left ruddervator force 
allforces(16:18) = Left ruddervator moment 
allforces(19:21) = Right ruddervator force 
allforces(22:24) = Right ruddervator moment 
allforces(25:27) = Ext Drag Force 
allforces(28:30) = Ext drag momoents 
allforces(31:33) = Ext gravity forces 
allforces(34:36) = Extgravity moments 
%} 
  
FBOOMrRF_F = [-294; 0; 0]/12;  % ruddevator pivot location (ft) 
maeroF_F = allforces(4:6) + allforces(16:18) + cross( FBOOMrRF_F, 
allforces(13:15))... 
    + allforces(22:24) + cross( FBOOMrRF_F, allforces(19:21)); 
  
faeroF_F = allforces(1:3) + allforces(13:15) + allforces(19:21); 
  
  
ForceVector = zeros(18,1); 
ForceVector = [  faeroB_B;... 
                 maeroB_B;... 
                 faeroF_F + allforces(7:9);... 
                 maeroF_F + allforces(10:12);... 
                 allforces(25:27) + allforces(31:33);... 
                 allforces(28:30) + allforces(34:36)]; 
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function accelvec = RHS_I_Bdot_Eta(MMtx, BdotMtx, VB_I, velFB) 
.  
  
velFB(1) = VB_I(1); 
velFB(2) = VB_I(2); 
velFB(3) = VB_I(3); 
accelvec = MMtx*BdotMtx*velFB; 
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function accelerations = eta_double_dot(MMtx, RHSvec, BMtx) 
.  
  
% Transform the uncoupled inertia matrix to the (9x9) joint inertia 
matrix 
BTMB = BMtx'*MMtx*BMtx; 
  
% Combine and transform the complete right hand side 
BTRHSVec = BMtx'*RHSvec; 
  
accelerations = inv( BTMB )*BTRHSVec; 
accelerations(9) = 0; % Control the boom ext 
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